Advertisement

pure and applied geophysics

, Volume 119, Issue 2, pp 248–258 | Cite as

An approximate computation of infrared radiative fluxes in a cloudy atmosphere

  • J. Schmetz
  • E. Raschke
Article

Abstract

A two-stream approximation is applied to the equation of infrared (IR) radiative transfer in order to compute the detailed structure of fluxes and cooling/heating rates in inhomogeneous, cloudy atmospheres. The spectrum between 4 and 400 μm is split into 50 bands, and absorption of water vapour, uniformly mixed gases, ozone, water vapour polymers and water droplets are taken into account. Allowance is made for scattering by water droplets in the atmospheric window region (8–12.8 μm) where the delta function approximation is used. The backward scattering coefficient is calculated from the asymmetry parameter by means of a new simple formula. The model is compared to other radiative transfer schemes and some applications are presented.

Key words

Cloudy atmosphere Cooling/heating rates Radiative transfer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chandrasekhar, S. (1960),Radiative Transfer (Dover Publ. Ind., New York) 393 pp.Google Scholar
  2. Cox, S. K. (1973),Infra-red Heating Calculations with a Water Vapour Pressure Broadened Continuum, Quart. J. R. Met. Soc.99, 669–679.Google Scholar
  3. Graßl, H. (1976),A New Type of Absorption in the Atmospheric Infrared Window due to Water Vapor Polymers, Beitr. Phys. Atmosph.49, 225–236.Google Scholar
  4. Gruenzel, R. (1978),Mathematical Expressions for Molecular Absorption in Lowtran B, Appl. Opt.17, 2591–2593.Google Scholar
  5. Hale, G. M., andQuerry, M. R. (1973),Optical Constants of Water in the 200 nm to 200 m Wavelength Region, Appl. Optics12, 555–563.Google Scholar
  6. Hansen, J. (1969),Exact and Approximate Solutions for Multiple Scattering by Cloudy and Hazy Planetary Atmospheres, J. Atmos. Sci.27, 943–949.Google Scholar
  7. Hansen, J. E. (1971),Multiple Scattering of Polarized Light in Planetary Atmospheres. Part 2: Sunlight Reflected by Terrestrial Water Clouds, J. Atmos. Sci.28, 1400–1426.Google Scholar
  8. IAMAP (1977),Report of the IAMAP Radiation Commission Working Group on a Standard Radiation Atmosphere (Seattle, Wash., 29 August 1977).Google Scholar
  9. Janßen, Th. (1975),Abkühlung der planetarischen Grenzschicht durch Wärmestrahlung, Diplomarbeit am Institut für Geophysik und Meteorologie der Universität zu Köln.Google Scholar
  10. Jung, H. J. (1975),Berechnung infraroter Strahlungsdivergenzen in wolkenfreien und bewölkten Atmosphärenmodellen, Diplomarbeit am Institut für Geophysik und Meteorologie der Universität zu Köln.Google Scholar
  11. Kahn, P. H., andBusinger, J. A. (1979),The Effect of Radiative Flux Divergence on Entrainment of a Saturated Convective Boundary Layer, Quart. J. R. Met. Soc.105, 303–305.Google Scholar
  12. Kondratyev, K. Ya. (1969),Radiation in the Atmosphere (Academic Press, New York-London) 912 pp.Google Scholar
  13. Rorb, G. J., Welch, R. M., andZdunkowski, W. G. (1975),An Approximate Method for the Determination of Infrared Radiative Fluxes in Scattering and Absorbing Media, Beitr. Phys. Atmosph.48, 85–94.Google Scholar
  14. Lenoble, J. (1975),Standard Procedures to Compute Atmospheric Radiative Transfer in a Scattering Atmosphere, Vol. I, IAMAP Radiation Commission.Google Scholar
  15. Lilly, D. K., andSchubert, W. H. (1980),The Effects of Radiative Cooling in a Cloud Topped Mixed Layer, J. Atmos. Sci.37, 482–487.Google Scholar
  16. Pierluissi, J. H., Tomiyama, K., andGomez, R. (1979),Analysis of the Lowtran Transmission Functions, Appl. Opt.18, 1607–1612.Google Scholar
  17. Platt, C., Reynolds, D., andAbshire, N. (1980),Satellite and Lidar Observations of the Albedo, Emittance and Optical Depth of Cirrus Compared to Model Calculations, Mon. Wea. Rev.108, 195–204.Google Scholar
  18. Pollard, R. T. (1978),The Joint Air-Sea Interaction Experiment—Jasin 1978, Bull. Amer. Meteor. Soc.59, 1310–1318.Google Scholar
  19. Potter, J. F. (1970),The Delta Function Approximation in Radiative Transfer Theory, J. Atmos. Sci.27, 943–949.Google Scholar
  20. Randall, D. A. (1980),Entrainment into a Stratocumulus Layer with Distributed Radiative Cooling, J. Atmos. Sci.37, 148–159.Google Scholar
  21. Roach, W. T., andSlingo, A. (1979),A High Resolution Radiative Transfer Scheme to Study the Interaction of Radiation with Cloud, Quart. J. R. Met. Soc.105, 603–614.Google Scholar
  22. Schaller, E. (1979),A Delta-two-stream Approximation in Radiative Flux Calculations, Beitr. Phys. Atmosph.52, 17–26Google Scholar
  23. Schaller, E. (1980),Die Rolle von Strahlungsprozessen in einem Modell für abgehobene Inversionen, Bericht des Deutschen Wetterdienstes Nr. 151.Google Scholar
  24. Selby, J., Kneizys, F., Chetwynd, J., andMcClatchey, R. (1978),Atmospheric Transmittance/Radiance: Computer Code Lowtran 4, AFGL-TR-78-0053, Air Force Geophysics Laboratory, Hanscom Mass.Google Scholar
  25. Slingo, A., Brown, R., andWrench, C. L. (1980),A Field Study of Nocturnal Stratocumulus: III. High Resolution Radiative and Microphysical Observations, submitted to Quart. J. R. Met. Soc.Google Scholar
  26. Stephens, G. (1980),Radiative Properties of Cirrus Clouds in the Infrared Region J. Atmos. Sci.37, 435–446.Google Scholar
  27. Wang, W., andDomoto, G. A. (1974),The Radiative Effect of Aerosols in the Earth's Atmosphere, J. Appl. Meteor.13, 521–534.Google Scholar
  28. Widger, W. K., andWoodall, M. P. (1976),Integration of the Planck Blackbody Radiation Function, Bull. Amer. Meteor. Soc.57, 1217–1219.Google Scholar
  29. Wiscombe, W. J., andGrams, G. W. (1976),The Backscattered Fraction in Two-Stream Approximations, J. Atmos. Sci.33, 2440–2451.Google Scholar
  30. Yueh, W. R., andChameides, W. L. (1979),A Perturbative Treatment of Aerosol Scattering of Infrared Radiation, J. Atmos. Sci.36, 1997–2005.Google Scholar
  31. Zdunkowski, W. G., Korb, G. J., andDavis, C. T. (1974),Radiative Transfer in Model Clouds of Variable and Height Constant Liquid Water Content as Computed by Approximate and Exact Methods, Beitr. Phys. Atmosph.47, 157–186.Google Scholar

Copyright information

© Birkhäuser Verlag 1981

Authors and Affiliations

  • J. Schmetz
  • E. Raschke
    • 1
  1. 1.Institut für Geophysik und Meteorologie der Universität zu KölnKöln 41Germany

Personalised recommendations