Skip to main content
Log in

Self-organizing maps for internal representations

  • Published:
Psychological Research Aims and scope Submit manuscript

Summary

One of the biological mechanisms that has so far been poorly understood is the ability of the brain to form representations of primary sensory experiences at increasingly higher levels of abstraction. At many lower perceptual levels, sensory information first becomes represented in topographically ordered sensory maps. In these maps neurons become tuned in a regular manner to simple stimulus features, such as amplitude, frequency, or direction of sound. In this paper it is shown that a model, originally devised by Kohonen for the understanding of the self-organized formation of such “lower-level maps,” can also explain the formation of more abstract maps, such as adaptive maps for use in motor control, or maps in which, during a learning stage, the neurons become tuned in an orderly fashion to aspects of the semantic meaning of words. The actual presence of such maps in the brain is speculative at present, but many maps of simpler type have been found. It is argued that the process of the adaptive formation of maps may offer a way to a more unified understanding of many aspects of information processing in the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, J. A., & Rosenfeld, E. (Eds.) (1989).Neurocomputing — foundations of research. Cambridge, MA: MIT Press.

    Google Scholar 

  • Caramazza, A. (1988). Some aspects of language processing revealed through the analysis of acquired aphasia: The lexical system.Annual Review of Neuroscience, 11, 395–421.

    PubMed  Google Scholar 

  • Cottrell, M., & Fort, J. C. (1986). A stochastic model of retinotopy: A self-organizing process.Biological Cybernetics, 53, 405–411.

    PubMed  Google Scholar 

  • Essen, D. van, (1985). Functional organization of primate visual cortex. In A. Peters & E. G. Jones (Eds.),Cerebral cortex (Vol. 3, pp. 259–329). New York: Plenum Press.

    Google Scholar 

  • Harris, W. A. (1986). Learned topography: The eye instructs the ear.Trends in Neuroscience e,g, 97 – 99.

  • Hasselmo, M. E., Rolls, E. T., & Baylis, G. C. (1989). The role of expression and identity in the face selective neurons in the temporal visual cortex of the monkey.Behavioral and Brain Research, 32, 203–218.

    Google Scholar 

  • Hart, J., Berndt, R. S., & Caramazza, A. (1985). Category-specific naming deficit following cerebral infarction.Nature, 316, 439–440.

    PubMed  Google Scholar 

  • Hubel, D. H., & Wiesel, T. N. (1959). Receptive fields of single neurons in the cat's striate cortex.Journal of Physiology, 148, 574–591.

    PubMed  Google Scholar 

  • Kaas, J. H., Nelson, R. J., Sur, M., Lin, C. S., & Merzenich, M. M. (1979). Multiple representations of the body within the primary somatosensory cortex of primates.Science, 204, 521–523.

    PubMed  Google Scholar 

  • King, A. J., Hutchings, M. E., Moore, D. R., & Blakemore, C. (1988). Developmental plasticity in the visual and auditory representations in the mammalian superior colliculus.Nature, 332, 73–76.

    PubMed  Google Scholar 

  • Knudsen, E. I., du Lac, S., & Esterly, S. D. (1987). Computational maps in the brain.Annual Review of Neuroscience, 10, 41–65.

    PubMed  Google Scholar 

  • Kohonen, T. (1982a). Self-organized formation of topologically correct feature maps.Biological Cybernetics, 43, 59–69.

    Google Scholar 

  • Kohonen, T. (1982b). Analysis of a simple self-organizing process.Biological Cybernetics, 44, 135–140.

    Google Scholar 

  • Kohonen, T. (1982c). Clustering, taxonomy and topological maps of patterns.Proceedings of the 6th International Conference of Pattern Recognition, Munich, pp. 114 – 128.

  • Kohonen, T. (1984). Self-organization and associative memory. Springer Series in Information Sciences, 8. Heidelberg: Springer.

    Google Scholar 

  • Kohonen, T., Mäkisara, K., & Saramäki, T. (1984). Phonotopic maps —insightful representation of phonological features for speech recognition.Proceedings of the 7th International Conference of Pattern Recognition, Montreal, pp. 182 – 185.

  • Lemon, R. (1988). The output map of the primate motor cortex.Trends in Neuroscience, 11, 501–506.

    Google Scholar 

  • Malsburg, C. von der, & Willshaw, D. J. (1977). How to label nerve cells so that they can interconnect in an ordered fashion.Proceedings of the National Academy of Sciences, USA, 74, 5176–5178.

    Google Scholar 

  • Martinetz, T., Ritter, H., & Schulten, K. (1989a). Three-dimensional neural net for learning visuomotor-coordination of a robot arm.IEEE-Transactions on Neural Networks, 1, 131–136.

    Google Scholar 

  • Martinetz, T., Ritter, H., & Schulten, K. (1989b). Learning of visuomotor-coordination of a robot arm with redundant degrees of freedom. In R. Eckmiller & C. v. d. Malsburg (Eds.),Parallel processing in neural systems and computers (pp. 431–434). Amsterdam: North Holland.

    Google Scholar 

  • Merzenich, M. M., Nelson, R. J., Stryker, M. P., Cynader, M. S., Schoppmann, A., & Zook, J. M. (1984). Somatosensory cortical map changes following digit amputation in adult monkeys.Journal of Comparative Neurology, 224, 591–605.

    PubMed  Google Scholar 

  • Obermayer, K., Ritter, H., & Schulten, K. (1989). Large-scale simulation of a self-organizing neural network: Formation of a somatotopic map. In R. Eckmiller & C. v. d. Malsburg (Eds.). In Parallel processing in neural systems and computers (pp. 71–74). Amsterdam: North-Holland.

    Google Scholar 

  • Ojemann, G. A. (1983). Brain organization for language from the perspective of electrical stimulation mapping.Behavioural and Brain Sciences, 6, 189–230.

    Google Scholar 

  • O'Leary, D. D. M. (1989). Do cortical areas emerge from a protocortex?Trends in Neuroscience, 12, 400–406.

    Google Scholar 

  • Rauschecker, J. P., & Singer, W. (1981). The effects of early visual experience on the cat's visual cortex and their possible explanation by Hebb-synapses.Journal of Physiology, 310, 215–239.

    PubMed  Google Scholar 

  • Ritter, H., & Schulten, K. (1987). Extending Kohonen's self-organizing mapping algorithm to learn ballistic movements. In R. Eckmiller & C. von der Malsburg (Eds.),Neural Computers (pp. 393–406). Berlin, Heidelberg, New York: Springer.

    Google Scholar 

  • Ritter, H., & Schulten, K. (1988). Kohonen's self-organizing maps: Exploring their computational capabilities.IEEE ICNN 88 Conference, San Diego, I, 109–116.

    Google Scholar 

  • Ritter, H. (1988). Selbstorganisierende Neuronale Karten. Thesis, Technical University, Munich.

    Google Scholar 

  • Ritter, H., & Kohonen, T. (1989a). Self-organizing semantic maps.Biological Cybernetics, 61, 241–254.

    Google Scholar 

  • Ritter, H., & Kohonen, T. (1989b). Learning “semantotopic maps” from context.Proceedings of the International Joint Conference on Neural Networks IJCNN-90, Washington D.C., I, 23 – 26.

  • Ritter, H., Martinetz, T., & Schulten, K. (1989a). Topology conserving maps for learning visuomotor-coordination.Neural Networks, 2, 159–168.

    Google Scholar 

  • Ritter, H., Martinetz, T., & Schulten, K. (1989b). Topology conserving maps for motor control. In L. Personnaz & G. Dreyfus (Eds.),In Neural Networks. From models to applications, (pp. 579–591). Paris: I,D,S,E,T.

    Google Scholar 

  • Ritter, H., & Schulten, K. (1989). Convergence properties of Kohonen's topology conserving maps: Fluctuations, stability and dimension selection.Biological Cybernetics, 60, 59–71.

    Google Scholar 

  • Rumelhart, D. E., & McClelland, D. E. (1986).Parallel distributed processing, Vols. 1 – 2. Cambridge, MA: MIT Press.

    Google Scholar 

  • Sparks, D. L., & Nelson, J. S. (1987). Sensory and motor maps in the mammalian superior colliculus.Trends in Neuroscience, 10, 312–317.

    Google Scholar 

  • Suga, N., & O'Neill, W. E. (1979). Neural axis representing target range in the auditory cortex of the Mustache Bat.Science, 206, 351–353.

    PubMed  Google Scholar 

  • Willshaw, D. J., & Malsburg, C. von der (1976). How patterned neural connections can be set up by self-organization.Proceedings of the Royal Society, London B, 194, 431–445.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

On leave to the University of Bielefeld, Department of Computer Science, D-4800 Bielefeld, Federal Republic of Germany.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ritter, H. Self-organizing maps for internal representations. Psychol. Res 52, 128–136 (1990). https://doi.org/10.1007/BF00877520

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00877520

Keywords

Navigation