Skip to main content
Log in

Inquiry into intentional systems I: Issues in ecological physics

  • Published:
Psychological Research Aims and scope Submit manuscript

Summary

The role of intention in guiding the behavior of goal-directed systems is a problem that continues to challenge behavioral science. While it is generally agreed that intentional systems must be consistent with the laws of physics, there are many obvious differences between inanimate, physical systems and sentient, intentional systems. This suggests that there must be constraints over and above those of physics that govern goal-directed behavior. In this paper it is suggested that generic properties of self-organizing mechanisms may play a central role in the origin and evolution of intentional constraints. The properties of self-organizing systems are first introduced in the context of simple physical systems and then extended to a complex (biological) system. Whereas behavior of an inanimate physical system is lawfully determined by force fields, behavior of an animate biological system is lawfully specified by information fields. Biological systems are distinguished from simple physical systems in terms of their ubiquitous use of information fields as special (biological and psychological, social, etc.) boundary conditions on classical laws. Unlike classical constraints (boundary conditions), informational constraints can vary with time and state of the system. Because of the nonstationarity of the boundary conditions, the dynamic of the system can follow a complex trajectory that is organized by a set of spatially and temporally distributed equilibrium points or regions. It is suggested that this equilibrium set and the laws that govern its transformation define a minimal requirement for an intentional system. One of the benefits of such an approach is that it suggests a realist account for the origin of semantic predicates, thereby providing a basis for the development of a theory of symbolic dynamics. Therefore, the principles of self-organization provide a comprehensive basis for investigating intentional systems by suggesting how it is that intentions arise, and by providing a lawful basis for intentional behavior that reveals how organisms become and remain lawfully informed in the pursuit of their goals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ashby, W. R. (1952).Design for a brain. London: Chapman and Hall.

    Google Scholar 

  • Ashby, W. R. (1956).Introduction to cybernetics. London: Chapman and Hall.

    Google Scholar 

  • Atkins, P. W. (1984).The second law. New York: W. H. Freeman & Co.

    Google Scholar 

  • Auslander, L., & MacKenzie, R. (1977).Introduction to differentiable manifolds. New York: Dover.

    Google Scholar 

  • Braithwaite, R. B. (1953).Scientific explanation. Cambridge: The University Press.

    Google Scholar 

  • Bruinsma, O. H. (1977).An analysis of building behavior of the termite macrotermes subhyalinus.Proceedings of the VIII Congress. Wageningen: IUSSI.

    Google Scholar 

  • Carello, C., Kugler, P. N., Turvey, M. T., & Shaw, R. E. (1984). Inadequacies of the computer metaphor. In M. Gazzaniga (Ed.),Handbook of cognitive neuroscience (pp. 229–248). New York: Plenum Press.

    Google Scholar 

  • Carreri, G. (1984).Order and disorder in matter. Menlo Park: Benjamin Cummings.

    Google Scholar 

  • Casti, J. L. (1989).Alternative realities: Mathematical models of nature and man. New York: Wiley.

    Google Scholar 

  • Davies, P. (1989).The new physics. Cambridge: Cambridge University Press.

    Google Scholar 

  • Deneubourge, J. L. (1977). Application de l'ordre par fluctuation à la description de la construction du nid chez les termites.Insectes sociaux, Journal International pour l'étude des arthropodes sociaux, 24, 117.

    Google Scholar 

  • Fodor, J., & Pylyshyn, Z. (1981). How direct is visual perception?Cognition, 9, 139–196.

    PubMed  Google Scholar 

  • Fodor, J., & Pylyshyn, Z. (1988). Connectionism and cognitive architecture: A critical analysis.Cognition, 28, 3–71.

    PubMed  Google Scholar 

  • Gibson, J. J. (1979).The ecological approach to visual perception. Boston: Houghton-Mifflin.

    Google Scholar 

  • Grasse, P. P. (1959). La réconstruction du nid et les coordinations interindividuelles chez Bellicositermes natalensis et cubitermes. La théorie de la stigmergie: essai d'interprétation des termites conctructeurs.Insectes sociaux, Journal International pour l'étude des arthropodes sociaux, 6, 127.

    Google Scholar 

  • Haken, H. (1988).Information and self-organization: A macroscopic approach to complex systems. New York, Berlin, Heidelberg: Springer.

    Google Scholar 

  • Iberall, A. S., & McCulloch, W. (1969). The organizing principle of complex living systems.Transactions of the American Society of Mechanical Engineers, (June), 290–294.

  • Kugler, P. N., & Shaw, R. (1990). Symmetry and symmetry-breaking in thermodynamic and epistemic engines: A coupling of first and second laws. In H. Haken (Ed.),Synergetics of cognition. Berlin, Heidelberg, New York: Springer.

    Google Scholar 

  • Kugler, P. N., & Turvey, M. T. (1987).Information, natural law, and the self-assembly of'rhythmic movements. Hillsdale, NJ: LEA.

    Google Scholar 

  • Kugler, P. N., Kelso, J. A. S., & Turvey, M. T. (1982). On the control and coordination of naturally developing systems. In J. A. S. Kelso & J. E. Clark (Eds.),The development of movement control and coordination. New York: Wiley.

    Google Scholar 

  • Lanczos, C. (1970).The variational principles of mechanics. New York: Dover.

    Google Scholar 

  • Lee, D. N. (1976). A theory of visual control of braking based on information about time-to-collision.Perception, 5, 437–459.

    PubMed  Google Scholar 

  • Lee, D. N., & Reddish, P. E. (1981). Plummeting gannets: Aparadigm of ecological optics.Nature, 293 (5830), 293–294.

    Google Scholar 

  • Lee, D. N., Lishman, J. R., & Thomson, J. A. (1982). Visual regulation of gait in long jumping.Journal of Experimental Psychology: Human Perception and Performance, 8, 448–459.

    Google Scholar 

  • Mark, L. S., Shaw, R. E., & Pittenger, J. B. (1988). Natural constraints, scales of analysis, and information for the perception of growing faces. In T. R. Alley (Ed.),Social and applied aspects of perceiving faces (pp. 11–50). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Nicolis, G., & Prigogine, I. (1977).Self-organization in non-equilibrium systems. New York: Wiley.

    Google Scholar 

  • Nicolis, G., & Prigogine, I. (1989).Exploring complexity. San Francisco: W. H. Freeman.

    Google Scholar 

  • Powers, W. T. (1973).Behavior: The control of perception. Chicago: Aldine.

    Google Scholar 

  • Prigogine, I. (1980).From being to becoming. San Francisco: W. H. Freeman.

    Google Scholar 

  • Prigogine, I., & Stengers, I. (1984).Order out of chaos. New York: Bantam Books.

    Google Scholar 

  • Prigogine, I., Nicolis, G., & Babloyantz, A. (1972). Thermodynamics of evolution.Physics Today, 25, 23–28.

    Google Scholar 

  • Rosen, R. (1978).Fundamentals of measurement and representation of natural systems. New York: Elsevier.

    Google Scholar 

  • Rosen, R. (1985).Anticipatory systems: Philosophical, mathematical, and methodological foundations. New York: Pergamon.

    Google Scholar 

  • Rosenblueth, A., Wiener, N., & Bigelow, J. (1943). Behavior, purpose and teleology.Philosophy of Science, 10, 19–24.

    Google Scholar 

  • Runeson, S. (1977). On the possibility of “smart” perceptual mechanisms.Scandinavian Journal of Psychology, 18, 172–179.

    PubMed  Google Scholar 

  • Runeson, S., & Frykholm, G. (1983). Kinematic specification of dynamics as an informational basis for person and action perception: Expectation, gender recognition, and deceptive intention.Journal of Experimental Psychology: General, 112, 585–615.

    Google Scholar 

  • Russell, E. S. (1945).The directiveness of organic activities. Cambridge: The University Press.

    Google Scholar 

  • Sachs, M. (1973).The field concept in contemporary sciences. Springfield, IL: Charles C. Thomas Publishers.

    Google Scholar 

  • Schiff, W. (1965). The perception of impending collision.Psychological Monographs, 79, No. 604.

  • Shaw, R. E. (1987). Behavior with a purpose.Contemporary Psychology, 3, 243–245.

    Google Scholar 

  • Shaw, R. E., & Alley, T. (1985). How to draw learning curves: Their use and justification. In T. D. Johnston & A. T. Pietrewicz (Eds.),Issues in the ecological study of learning (pp. 275–403). Hillsdale, NJ: LEA.

    Google Scholar 

  • Shaw, R. E., & Kinsella-Shaw, J. M. (1988). Ecological mechanics: A physical geometry for intentional constraints.Human Movement Science, 7, 155–200.

    Google Scholar 

  • Shaw, R. E., & Todd, J. (1980). Abstract machine theory and direct perception.Behavioral and Brain Sciences, 3, 400–401.

    Google Scholar 

  • Shaw, R. E., & Mingolla, E. (1982). Ecologizing world graphs.Behavioral and Brain Sciences, 5, 648–650.

    Google Scholar 

  • Shaw, R. E., Kugler, P. N., & Kinsella-Shaw, J. M. (1990). Reciprocities of intentional systems. In R. Warren & A. Wertheim (Eds.),Control of self-motion. Hillsdale, NJ: LEA.

    Google Scholar 

  • Sommerhoff, G. (1950).Analytical biology. London: Oxford University Press.

    Google Scholar 

  • Soodak, H., & Iberall, A. S. (1987). Thermodynamics and complex systems. In F. E. Yates (Ed.),Self-organizing systems: The emergence of order. New York: Plenum Press.

    Google Scholar 

  • Taylor, R. (1966).Action and purpose. Englewood Cliffs, NJ: Prentice-Hall.

    Google Scholar 

  • Thomson, J. A. (1983). Is continuous visual monitoring necessary in visually guided locomotion?Journal of Experimental Psychology: Human Perception and Performance, 9, 427–443.

    Google Scholar 

  • Turvey, M. T., Shaw, R. E., Reed, E. S., & Mace, W. M. (1981). Ecological laws of perceiving and acting: In reply to Fodor and Pylyshyn (1981).Cognition, 9, 237–304.

    PubMed  Google Scholar 

  • Ullman, S. (1980). Against direct perception.Behavioral and Brain Sciences, 3, 373–415.

    Google Scholar 

  • Warren, W. H., & Shaw, R. E. (Eds.) (1985).Persistence and change: The proceedings of the first international conference on event perception. Hillsdale; NJ: Erlbaum.

    Google Scholar 

  • Weir, M. (1985).Goal-directed behavior. New York: Gordon & Breach.

    Google Scholar 

  • Woodfield, L. (1976).Teleology. Cambridge: The University Press.

    Google Scholar 

  • Yates, F. E. (1982). Outline of a physical theory of physiological systems.Canadian Journal of Physiology and Pharmacology, 60, 217–248.

    PubMed  Google Scholar 

  • Yates, F. E. (Ed.) (1987).Self-organizing systems: The emergence of order. New York: Plenum Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kugler, P.N., Shaw, R.E., Vincente, K.J. et al. Inquiry into intentional systems I: Issues in ecological physics. Psychol. Res 52, 98–121 (1990). https://doi.org/10.1007/BF00877518

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00877518

Keywords

Navigation