Advertisement

Aquatic Sciences

, Volume 56, Issue 1, pp 1–15 | Cite as

Biomass composition and methods for the determination of metabolic reserve polymers in phototrophic sulfur bacteria

  • Claudio Del Don
  • Kurt W. Hanselmann
  • Raffaele Peduzzi
  • Reinhard Bachofen
Article

Abstract

To study nutrient fluxes within aquatic ecosystems, the synthesis of biomass and of various storage polymers has been analysed in samples from a meromictic alpine lake. Methods are described for the quantitative determination of whole cell biomass, glycogen, polyhydroxyalkanoates (PHA) and sulfur. Methods were adapted to conditions present in natural environments and tested with samples from blooms of Chromatiaceae and with corresponding laboratory cultures. Dried bacterioplankton-biomass has been analyzed for sulfur, glycogen and polyhydroxyalkanoates, and after complete oxidation for SO 4 2- , NO 3 - and HPO 4 2- . The average elemental composition of biomass from phototrophic sulfur bacteria, depleted of sulfur and carbon storage compounds, was C380H580O153N67P3S2.5M, where M stands for the content of the remaining minor elements. C, H, O, N, P and S accounted for 86.7% of the total dry mass. Storage sulfur in natural populations was equivalent to 2.5% to 13.5% of the dry mass; its content varied by 80% within a diurnal cycle. Glycogen contents fluctuated by approximately 50%; they accounted for 7.5% to 15.2% of the dry cell mass. The total content of reserve materials per cell never exceeded 30% of the dry mass. PHA had not been found in appreciable amounts in cells harvested from the natural lake habitat. Under certain conditions in the laboratoryChromatium okenii could be induced, however, to produce polyhydroxyalkanoates. Sulfur, glycogen and PHA contents of 33, 26 and 11%, respectively, were achieved under laboratory-culture conditions. Cells with up to 60% of their dry mass consisting of reserve materials can be obtained under selected laboratory conditions.

Key words

Glycogen polyhydroxyalkanoates sulfur globules biomass elemental composition lake Cadagno 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bauld, J., 1986. Transformation of sulfur species by phototrophic and chemotrophic microbes. In: M. Bernhard, F. E. Brinckman and P. J. Sadler, (eds.), The importance of chemical speciation in environmental processes, Springer, Berlin, pp. 255–273.Google Scholar
  2. Brandl, H., R. A. Gross, R. W. Lenz, R. Lloyd and R. C. Fuller, 1991. The accumulation of poly(3-hydroxyalkanoates) inRhodobacter sphaeroides. Arch. Microbiol. 155:337–340.Google Scholar
  3. Bremer, H. and P. P. Dennis, 1987. Modulation of chemical composition and other parameters of the cell by growth rate. In: J. L. Ingraham, K. B. Low, B. Magasanik, M. Schaechter and H. E. Umbarger (eds.), Escherichia coli and Samonella typhimurium, cellular and molecular biology Am. Soc. Microbiol. Washington, D. C., pp. 1527–1542.Google Scholar
  4. Capon R. J., Dunlop R. W., Ghisalberti E. L. and P. J. Jefferies, 1983. Poly-3-hydroxyalkanoates from marine and fresh water cyanobacteria, Phytochemistry 22:1181–1184.Google Scholar
  5. Del Don C., Hanselmann K. and R. Bachofen, 1994. Dark metabolism of phototrophic sulfur bacteria in Lago Cadagno, in preparation.Google Scholar
  6. De Wit R. and H. Van Gemerden, 1987. Chemolithotrophic growth of the phototrophic sulfur bacteriumThiocapsa roseopersicina, FEMS Microbiol. Ecol. 45:117–126.Google Scholar
  7. Eichler B. and N. Pfennig, 1988. A new purple sulfur bacterium from stratified freshwater lakes,Amoebobacter purpureus sp. nov., Arch. Microbiol. 149:395–400.Google Scholar
  8. Florkin M. and E. H. Stotz, 1963. Comprehensive Biochemistry, vol. 7, Protein Part 1, Elsevier, Amsterdam, London, New York, pp. 28–29.Google Scholar
  9. Fritz I. S., Gjerde D. T. and C. Pohlandt, 1982. Ion chromatography. Hüthig Verlag, Heidelberg, Basel, New York.Google Scholar
  10. Gemerden, H. Van, 1968. Utilization of reducing power in growing cultures ofChromatium, Arch. Microbiol. 64:111–117.Google Scholar
  11. Handel, E. Van, 1984. Metabolism of nutrients in the adult mosquito, Mosquito News 44:573–579.Google Scholar
  12. Handel, E. Van, 1985. Rapid determination of glycogen and sugars in mosquitoes, J. Am. Mosq. Control Assoc. 1:299–301.PubMedGoogle Scholar
  13. Hanselmann, K. W., 1991. Microbial energetics applied to waste repositories. Experientia 47:645–687.Google Scholar
  14. Herbert, D., P. J. Phipps and R. E. Strange, 1971. Chemical analysis of microbial cells. In: J. R. Norris and D. W. Ribbons (eds.), Methods in Microbiology Vol. 5B, Academic Press, New York, pp. 209–344.Google Scholar
  15. Hertz, J. and U. Baltensperger, 1984. Determination of nitrate and other inorganic anions in salad and vegetables by ion chromatography. Fresenius Z. Anal. Chem. 318:121–123.Google Scholar
  16. Kaiser J. P., 1987. Anaerober Abbau von methoxylierten Aromaten durch eine Gemeinschaft von Mikroorganismen, Dissertation Universität Zürich.Google Scholar
  17. Karr D. B., Waters K. J. and D. W. Emerich, 1983. Analysis of Poly-β-hydroxy butyrate inRhizobium japonicom bacteroides by Ion-Exclusion High-Pressure Liquid Chromatography and UV-Detection, Appl. Environ. Microbiol 45, 1339–1344.Google Scholar
  18. Kelly D. P., 1989. Physiology and biochemistry of unicellular sulfur bacteria. In: H. G. Schlegel and B. Bowien (eds.), Autotrophic Bacteria, Springer-Verlag, Berlin, Heidelberg, New York, pp. 193–217.Google Scholar
  19. Lowry, O. H., 1951. Protein measurement with the folin phenol reagent, J. Biol. Chem. 193:265–275.PubMedGoogle Scholar
  20. Merrick J. M., 1978. Metabolism of reserve materials. In: R. K. Clayton and W. R. Sistrom (eds.), The photosynthetic bacteria, Plenum Press, New York, USA, pp. 199–219.Google Scholar
  21. Müller R. and O. Widemann, 1955. Die Bestimmung des Nitrat-Ions im Wasser, Vom Wasser 22:247–257.Google Scholar
  22. Pfennig, N. and H. G. Trüper, 1992. The family Chromatiaceae. In: A. Balows, H. G. Trüper, M. Dworkin, W. Harder and K. H. Schliefer (eds.), The Prokaryotes, 2nd. ed., Springer-Verlag, Heidelberg, pp. 3200–3221.Google Scholar
  23. Schön, R., 1990. Acetyl-CoA-Stoffwechsel inDesulfotomaculum orientis unter fermentativen und sulfatreduzierenden Bedingungen. Diplomarbeit Universität Zürich.Google Scholar
  24. Steudel R. von, Holdt G., Goebel T. and W. Hazeu, 1987. Chromatographische Trennung höherer Polythionate SnO62- (n = 3 ⋯ 22) und deren Nachweis in Kulturen vonThiobacillus ferrooxidans; molekulare Zusammensetzung bakterieller Schwefelausscheidungen, Angew. Chem. 2:143–146.Google Scholar
  25. Tempest, D. W. and O. M. Neijssel, 1981. Metabolic compromises involved in the growth of microorganisms in nutrient-limited (chemostat) environments. Basic Life Sciences 18:335–356.PubMedGoogle Scholar
  26. Trueper H. G. and H. G. Schlegel, 1964. Sulfur metabolism in Thiorhodaceae. I. Quantitative measurements on growing cells ofChromatium okenii, Antonie v. Leewenhoek 30:225–238.Google Scholar
  27. Wagner H., 1957. Beitrag zur Mikrobestimmung des Schwefels in organischen Substanzen, Mikrochimica Acta 1:19–23.Google Scholar

Copyright information

© Birkhäuser Verlag 1994

Authors and Affiliations

  • Claudio Del Don
    • 1
  • Kurt W. Hanselmann
    • 1
  • Raffaele Peduzzi
    • 2
  • Reinhard Bachofen
    • 1
  1. 1.Institute of Plant BiologyUniversity of ZürichZürichSwitzerland
  2. 2.Istituto Cantonale BatteriosierologicoLuganoSwitzerland

Personalised recommendations