Aquatic Sciences

, Volume 57, Issue 3, pp 185–198 | Cite as

Time series of multivariate data in aquatic ecology

  • Miguel Alvarez Cobelas
  • María Verdugo
  • Carmen Rojo


Coupling of multivariate methods and time series analysis can be ueful for studying dynamics of aquatic communities. This is demonstratred with a data set from the pelagic area of an oligo-mesotrophic lake in Central Spain during 61 consecutive days of Autumn overturn. Abiotic variables, phytoplankton species and their total biomass were traced. Species abundance and specific biomass were considered as indices of community structure and resource partitioning, respectively. Abiotic and algal data sets were subjected to factor analyses of cases separately. Atmospheric forcing and nitrogen could be considered as the main (2) driving variables of the abiotic matrix. The coupling of motile abilities and cell size was associated to the main factors of the community structure matrix whereas phosphorus limitation and species responses to buoyancy represented the main factors of the biomass matrix. Coordinates of the two first factors could be used to mimic the trajectories in the data space. Significant short term lags (1–4 days) were found in most time series. Lagged responses of atmospheric forcing and nitrogen on phytoplankton community structure and resource partitioning at scales of 1–7 days were also shown. Overall phytoplankton biomass did not show significant delayed responses, thereby suggesting that it might be resulting from the interplay of other non-studied factors.

Key words

Time series multivariate data phytoplankton abiotic factors 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, T.F.H., 1977. Scale in microscopic algal ecology: a neglected dimension. Phycologia 16:253–257.Google Scholar
  2. Allen, T.F.H and T.W. Hoekstra, 1992. Toward a unified ecology. Columbia University Press, NY, 384 pp.Google Scholar
  3. Allen, T.F.H. and J.F. Koonce, 1973. Multivariate approaches to algal stratagems and tactics in systems analysis of phytoplankton. Ecology 54:1234–1246.Google Scholar
  4. Allen, T.F.H., D.A. Sadowski and N. Woodhead, 1984. Data transformation as a scaling operation in ordination of plankton. Vegetatio 56:147–160.Google Scholar
  5. Alvarez Cobelas, M., A. Baltanás, J. L. Velasco, M. Valladolid, M. Izquierdo and E. Martín, 1993. Slow overturn in a gravel-pit lake. Verh. Internat. Verein. Limnol. 25:83–87.Google Scholar
  6. Alvarez Cobelas, M., J.L. Velasco, A. Rubio and C. Rojo, 1994. The time course of phytoplankton biomass and related limnological factors in shallow and deep lakes: a multivariate approach. Hydrobiologia 275/276:139–151.Google Scholar
  7. APHA, 1985. Standard methods for the examination of water and wastewater. Washington DC, 1268 pp.Google Scholar
  8. Bartell, S. M., T.F.H. Allen and J. F. Koonce, 1978. An assessment or principal component analysis for description of phytoplankton periodicity in Lake Wingra. Phycologia 17:1–11.Google Scholar
  9. Chatfield, C., 1984. The analysis of time series. An introduction. 3rd edition. Chapman and Hall, London, 286 pp.Google Scholar
  10. Côté, B and T. Platt, 1983. Day-to-day variations in the spring-summer photosynthetic parameters of coastal marine phytoplankton Limnol. Oceanogr. 28:320–344.Google Scholar
  11. Falkowski, P. G and A.D. Woodhead (eds.), 1992. Primary productivity and biogeochemical cycles in the sea. Plenum Press, NY, 550 pp.Google Scholar
  12. Gauch, H. G., 1982. Multivariate analysis in community ecology. Cambridge University Press, Cambridge, 298 pp.Google Scholar
  13. Ibanez, F., 1976. Contribution à l'analyse mathématique des événements en écologie planctonique. Optimisations méthodologiques; étude expérimentale en continu à petite échelle de l'hétérogénéite du plancton côtier. Bull. Inst. Oceanogr. Monaco 72:1–96.Google Scholar
  14. Jassby, A. D. and T.M. Powell, 1990. Detecting changes in ecological time series. Ecology 71:2044–2052.Google Scholar
  15. Jassby, A. D., C. R. Goldman and T. M. Powell, 1992. Trend, seasonality, cycle, and irregular fluctuations in primary productivity at Lake Tahoe, California-Nevada, USA. Hydrobiologia 246:195–203.Google Scholar
  16. Lang, C., 1978. Approche multivariable de la détection biologique et chimique des pollutions dans le Lac Léman (Suisse). Arch. Hydrobiol. 83:158–178.Google Scholar
  17. Legendre, L., 1990. The significance of microalgal blooms for fisheries and for the export of particulate organic carbon in oceans. J. Plankton Res. 12:681–699.Google Scholar
  18. Legendre, L. and P. Legendre, 1979. Ecologie numérique. Tome 2. La structure des donnés écologiques. Masson, Paris, 259 pp.Google Scholar
  19. Legendre, P. and S. Demers, 1984. Towards dynamic biological oceanography and limnology. Can. J. Fish. Aquat. Sci. 41:2–19.Google Scholar
  20. Martens, H. and T. Naes, 1989. Multivariate calibration. J. Wiley and Sons, Chichester, 419 pp.Google Scholar
  21. Miller, R. G. jr., 1981. Simultaneous statistical inference. 2nd edition. Springer Verlag, NY, 299 pp.Google Scholar
  22. Padisák, J., 1991. Relative frequency, seasonal pattern and possible role of species rare in phytoplankton in a large shallow lake (Lake Balaton, Hungary). Verh. Internat. Verein. Limnol. 24:989–992.Google Scholar
  23. Powell, T.M., 1989. Physical and biological scales of variability in lakes, estuaries, and the coastal ocean. In: J. Roughgarden, R. M. May and S. A. Levin (eds.), Princeton Univ. Press, Princeton: Perspectives in Ecological Theory, pp. 157–176.Google Scholar
  24. Reynolds, C. S., 1984. The ecology of freshwater phytoplankton. Cambridge University Press, Cambridge, 384 pp.Google Scholar
  25. Rott, E., 1981. Some results from phytoplankton counting intercalibrations. Schweiz. Z. Hydrol. 43:34–62.Google Scholar
  26. Sephton, D. and G. P. Harris, 1984. Physical variability and phytoplankton communities: VI. Day to day changes in primary productivity and species abundance. Arch. Hydrobiol. 102:155–175.Google Scholar
  27. Sommer, U., 1990. Phytoplankton nutrient competition — from laboratory to lake. In: J. B. Grace and D. Tilman (edds.), Academic Press, San Diego: Perspectives on Plant Competition, pp. 193–213.Google Scholar
  28. Steele, J. H., 1978. Some comments on plankton patches. In: J. H. Steele (ed.), Plenum Press, NY: Spatial Pattern in Plankton Communities, pp. 1–20.Google Scholar
  29. Threlkeld, S. T., 1994. Benthic-pelagic interactions in shallow water columns: an experimentalist's perspective. Hydrobiologia 275/276:293–300.Google Scholar

Copyright information

© Birkhäuser Verlag 1995

Authors and Affiliations

  • Miguel Alvarez Cobelas
    • 1
  • María Verdugo
    • 1
  • Carmen Rojo
    • 2
  1. 1.Centro de Ciencias Medioambientales (CSIC)MadridSpain
  2. 2.Dept. Microbiología, Fac. BiologíaUniv. ValenciaValenciaSpain

Personalised recommendations