Skip to main content
Log in

Is the senescent heart overloaded and already failing?

  • Review
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Summary

Heart failure mainly occurs during the last decades of life, and it is important to know if the senescent heart is not an already failing heart. During aging, both contraction and relaxation of papillary muscle are impaired. Such an impairment is compensated in vivo and the cardiac output remains normal. In spite of a loss in myocytes, the heart weight/body weight ratio is unchanged, but the myocytes are bigger. Arrhythmias are permanent and are accompanied by a loss of the normal heart rate variability. Changes in specific mRNAs include: a shift in myosin heavy chain (MHC) isogene expression leading to an increased βMHC content; decreased densities of Ca2+ ATPase of the sarcoplasmic reticulum, β1-adrenergic receptor, and muscarinic receptors; and attenuation of the Na+/Ca2+ exchange activity. Most of these changes, but not all, resemble those observed during cardiac overload and are accompanied by an increased duration of both the action potential and the intracellular calcium transient. However, the senescent heart is still able to further modify its phenotype in response to mechanical overload. The senescent heart is a diseased heart, and the origin of the “disease” is multifactorial and includes the general process of senescence, hormonal changes, and the myocardial consequences of senescence of the vessels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Swynghedauw B. Developmental and functional adaptation of contractile proteins in cardiac and skeletal museles.Physiol Rev 1986;66:710–771.

    PubMed  Google Scholar 

  2. Lakatta EG. Do hypertension and aging have a similar effect on the myocardium?Circulation 1987;75(Supp I):69–77.

    Google Scholar 

  3. Lakatta EG. Cardiac muscle changes in senescence.Ann Rev Physiol 1987;49:1–22.

    Google Scholar 

  4. Brock DW, Guralnik JM, Brody JA. Demography and epidemiology of aging in the United States. In: Schneider EL, Rowe JW, ed.Handbook of the Biology of Aging. San Diego, CA: Academic Press, 1990:3–23.

    Google Scholar 

  5. Rumberger E, Timermann J. Age changes of the forcefrequency relationship and the duration of action potential of isolated papillary muscles of guinea pig.Eur J Appl Physiol 1976;35:277–284.

    Google Scholar 

  6. Wei JY, Spurgeon HA, Lakatta EG. Excitation-contraction in rat myocardium: Alterations with adult aging.Am J Physiol 1984;246:H784-H791.

    PubMed  Google Scholar 

  7. Capasso JM, Malhorta A, Remily R, Scheuer J, Sonnenblick EH. Effects of age on mechanical and electrical performance of rat myocardium.Am J Physiol 1983;245:H72-H81.

    PubMed  Google Scholar 

  8. Orchard CH, Lakatta EG. Intracellular calcium transients and developed tension in rat heart muscle.J Gen Physiol 1985;86:637–651.

    PubMed  Google Scholar 

  9. Yin FCP, Spurgeon HA, Weisfeldt ML, Lakatta EG. Mechanical properties of myocardium from hypertrophied rat hearts. A comparison between hypertrophy induced by senescence and by aortic banding.Circ Res 1980;46:292–300.

    PubMed  Google Scholar 

  10. Bathnagar GM, Walford GD, Beard ES, Humphreys S, Lakatta EG. ATPase activity and force production in myofibrils and twitch characteristics in intact muscle from neonatal adult and senescent rat myocardium.J Mol Cell Cardiol 1984;16:203–218.

    PubMed  Google Scholar 

  11. Besse S, Assayag P, Delcayre C, et al. Normal and hypertrophied senescent rat heart. Mechanical and molecular characteristics.Am J Physiol 1993;265:H193-H190.

    Google Scholar 

  12. Jiang MT, Moffat MP, Narayanan N. Age-related alterations in the phosphorylation of sarcoplasmic reticulum and myofibrillar proteins and diminished contractile response to isoproterenol in intact rat ventricle.Circ Res 1993;72:102–111.

    PubMed  Google Scholar 

  13. Linzbach AJ, Akuamoa-Boateng E. Die Alternsveranderungen des menschlichen Herzens-I- Das Herzgenwicht im alter.Klin Wschr 1973;51:156–163.

    PubMed  Google Scholar 

  14. Gerstenblith G, Fredericksen J, Yin CP, Fortuin NJ, Lakatta EG, Weisfeldt MD. Echocardiographic assessment of a normal adult aging population.Circulation 1977;56:273–278.

    PubMed  Google Scholar 

  15. Fleg JL. Alterations in cardiovascular structure and function with advancing age.Am J Cardiol 1986;57:33C-44C.

    PubMed  Google Scholar 

  16. Anversa P, Hiler B, Ricci R, Guideri G, Olivetti G. Myocyte cell loss and myocyte hypertrophy in the aging rat heart.J Am Col Cardiol 1986;8:1441–1448.

    Google Scholar 

  17. Rodehefer RS, Gerstenblith G, Becker LC, Fleg JL, Weisfeld ML, Lakatta EG. Exercise cardiac output in maintained or advanced age in healthy human subjects: Cardiac dilatation and increase stoke volume compensate for a diminished heart rate.Circulation 1982;69:203–213.

    Google Scholar 

  18. Safar M. Aging and its effects on the cardiovascular system.Drugs 1990;39(Suppl I):1–8.

    Google Scholar 

  19. Lakatta EG. Altered autonomic modulation of cardiovascular function with adult aging: Perspectives from studies ranging from man to cell. In: Stone HL, Weglicky WB, ed.Pathobiology of Cardiovascular Injury. Boston: Martinus Nijhoff, 1985:441–460.

    Google Scholar 

  20. Levy D, Anderson KM, Savage DD, Balkus SA, Kannel WB, Castelli WP. Risk of ventricular arrhythmias in left ventricular hypertrophy. The Framingham heart study.Am J Cardiol 1987;60:560–565.

    PubMed  Google Scholar 

  21. Fleg JL, Kennedy HL. Cardiac arrhythmias in a healthy elderly population.Chest 1982;81:302–307.

    PubMed  Google Scholar 

  22. Carré F, Lessard Y, Coumel P, et al. Spontaneous arrhythmias in various models of cardiac hypertrophy and senescence of rats; A Holter monotoring study.Cardiovasc Res 1992;26:698–705.

    PubMed  Google Scholar 

  23. Schwartz JB, Gibb WJ, Tran T. Aging effects on heart rate variation. J Gerontol 1991;46:M99-M106.

    PubMed  Google Scholar 

  24. Olivetti G, Melissari M, Capasso JM, Anversa P. Cardiomyopathy of the aging human heart. Myocyte loss and reactive cellular hypertrophy.Circ Res 1991;68:1560–1568.

    PubMed  Google Scholar 

  25. Anversa P, Palackal T, Sonnenblick EH, Olivetti G, Meggs LG, Capasso JM. Myocyte cell loss and myocyte cellular hyperplasia in the hypertrophied aging rat heart.Circ Res 1990;67:871–885.

    PubMed  Google Scholar 

  26. Anversa P, Fitzpatrick D, Arganis S, Capasso JM. Myocyte mitotic division in the aging mammalian rat heart.Circ Res 1991;69:1159–1164.

    PubMed  Google Scholar 

  27. Tomanek RJ, Taunton CA, Liskop KS. Relationship between age, chronic exercise, and connective tissue of the heart.J Gerontol 1972;27:33–38.

    PubMed  Google Scholar 

  28. Eghbali M, Eghbali M, Robinson TF, Seifter S, Blumenfeld OO. Collagen accumulation in heart ventricles as a function of growth and aging.Cardiovasc Res 1980;23:723–729.

    Google Scholar 

  29. Eghbali M, Weber KT. Collagen type I gene expression in the heart.Ann NY Acad Sci 1990;580:468–472.

    Google Scholar 

  30. Meerson FZ, Javich MP, Lerman MI. Decrease in the rate of RNA and protein synthesis and degradation in the myocardium under long term compensatory hyperfunction and on aging.J Mol Cell Cardiol 1978;10:145–159.

    PubMed  Google Scholar 

  31. Crie JS, Millward DJ, Bates PC, Griffin EE, Wildenthal K. Age-related alterations in cardiac protein turnover.J Mol Cell Cardiol 1981;13:589–598.

    PubMed  Google Scholar 

  32. Danner DB, Holbrook NJ. Alterations in gene expression with aging. In: Schneider EL, Rowe JW, eds.Handbook of the Biology of Aging. San Diego, CA: Academic Press, 1990:97–115.

    Google Scholar 

  33. Lompré AM, Mercadier JJ, Schwartz K. Changes in gene expression during cardiac growth.Int Rev Cytol 1991;124:137–185.

    PubMed  Google Scholar 

  34. Takahashi T, Schunkert H, Isoyama S, et al. Age-related differences in the expression of proto oncogene and contractile protein genes in response to pressure overload in the rat myocardium.J Clin Invest 1992;89:939–946.

    PubMed  Google Scholar 

  35. O'Neill L, Holbrook N, Lakatta E. Progressive changes from young adult age to senescence in mRNA for rat cardiac myosin heavy chain genes.Cardioscience 1991;2:1–5.

    PubMed  Google Scholar 

  36. Buttrick P, Malhotra A, Factor S, Geenen D, Leinwand L, Scheuer J. Effect of aging and hypertension on myosin biochemistry and gene expression in the rat heart.Circ Res 1991;68:645–652.

    PubMed  Google Scholar 

  37. Maciel LMZ, Polikas R, Rohrer D, Popovich BK, Dillmann WH. Age-induced decreases in the messenger RNA coding for the sarcoplasmic reticulum Ca2+ ATPase of the rat heart.Circ Res 1990;67:230–234.

    PubMed  Google Scholar 

  38. Lompré AM, Lambert F, Lakatta EG, Schwartz K. Expression of sarcoplasmic reticulum Ca2+ ATPase and calsequestrine genes in rat heart during ontogenic development and aging.Circ Res 1991;69:1380–1388.

    PubMed  Google Scholar 

  39. Lompré AM, Schwartz K, d'Albis A, Lacombe G, Van Thiem N, Swynghedauw B. Myosin isoenzyme redistribution in chronic heart overload.Nature 1979;282:105–107.

    PubMed  Google Scholar 

  40. Schwartz K, Lecarpentier Y, Martin JL, Lompré AM, Mercadier JJ, Swynghedauw B. Myosin isoenzymic distribution correlates with speed of myocardial contraction.J Mol Cell Cardiol 1981;13:1071–1075.

    PubMed  Google Scholar 

  41. Carrier L, Boheler KR, Chassagne C, et al. Expression of the sarcomeric actin isogenes in the rat heart with development and senescence.Circ Res 1992;70:1–18.

    PubMed  Google Scholar 

  42. Guarnieri T, Filbaum CR, Zitnik G, Roth G, Lakatta E. Contractile and biochemical correlates of β adrenergic stimulation of the aged rat heart.Am J Physiol 1980;239:H501-H508.

    PubMed  Google Scholar 

  43. Narayanan N, Derby JA. Alterations in properties of β1-adrenergic recetors of myocardial membranes in aging: Impairments in agonist-receptor interactions and guanidine nucleotide regulation accompany diminished catecholamine-responsiveness of adenylate cyclase.Mech Ageing Dev 1982;19:127–139.

    PubMed  Google Scholar 

  44. Chevalier B, Mansier P, Teiger E, Callens-El Amrani F, Swynghedauw B. Alterations in β adrenergic and muscarinic receptors in aged rat heart. Effects of chronic administration of propranolol and atropine.Mech Ageing Dev 1991;60:215–224.

    PubMed  Google Scholar 

  45. Baker SP, Marchand S, O'Neil E, Nelson CA, Posner P. Age-related changes in cardiac muscarinic receptors: Decreased ability of the receptors to form a high affinity agonist binding state.J Gerontol 1985;40:141–146.

    PubMed  Google Scholar 

  46. Morgan DG, May PC. Age-related changes in synaptic neurochemistry. In: Schneider EL, Rowe JW, eds.Handbook of the Biology of Aging. San Diego, CA: Academic Press, 1990:219–254.

    Google Scholar 

  47. Chevalier B, Charlemagne D, Callens-El Amrani F, et al. The membrane proteins of the overloaded and senescent heart. In: Hasenfuss G, Holubarsch C, Just H, Alpert NR, eds.Cellular and Molecular Alterations in the Failing Human Heart. Darmstadt: Steinkopff Verlag, 1992: 187–197.

    Google Scholar 

  48. Froehlich JP, Lakatta EG, Beard E, Spurgeon HA, Weisfeld ML, Gerstenblith G. Studies of sarcoplasmic reticulum function and contraction duration in young and aged rat myocardium.J Mol Cell Cardiol 1978;10:427–438.

    PubMed  Google Scholar 

  49. Heyliger CE, Prakash AR, McNeill JH. Alterations in membrane Na+-Ca2+ exchange in the aging myocardium.Age 1988;11:1–6.

    Google Scholar 

  50. Isoyama S, Wei JY, Izumo S, Fort P, Schoen FJ, Grossman W. Effect of age on the development of cardiac hypertrophy produced by aortic constriction in the rat.Circ Res 1987;61:337–345.

    PubMed  Google Scholar 

  51. Boluyt MO, Opiteck JA, Esser KA, White V. Cardiac adaptations to aortic constriction in adult and aged rats.Am J Physiol 1989;257:H643-H648.

    PubMed  Google Scholar 

  52. Walford GD, Spurgeon HA, Lakatta EG. Diminished cardiac hypertrophy and muscle performance in older compared with younger adult rats with chronic atrio ventricular block.Circ Res 1988;63:502–511.

    PubMed  Google Scholar 

  53. Capasso JM, Malhotra A, Scheuer J, Sonnenblick EH. Myocardial, biochemical, contractile and electrical performance following imposition of hypertension in young and old rats.circ Res 1986;58:445–460.

    PubMed  Google Scholar 

  54. Weber KT, Brilla CG. Pathological hypertrophy and cardiac interstitium. Fibrosis and renin-angiotensin-aldosterone system.Circulation 1991;83:1849–1865.

    PubMed  Google Scholar 

  55. Corman B, Michel JB. Renin-angiotensin system, converting-enzyme inhibition and kydney function in aging female rats.Am J Physiol 1986;251:R450-R455.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Besse, S., Delcayre, C., Chevalier, B. et al. Is the senescent heart overloaded and already failing?. Cardiovasc Drug Ther 8, 581–587 (1994). https://doi.org/10.1007/BF00877412

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00877412

Key Words

Navigation