Cardiovascular Drugs and Therapy

, Volume 8, Issue 6, pp 787–799 | Cite as

Different types of centrally acting antihypertensives and their targets in the central nervous system

  • P. A. van Zwieten
  • J. P. Chalmers


The central regulation of blood pressure and other cardiovascular parameters may involve the baroreceptor reflex arc, including both adrenergic and serotonergic pathways, as well as amino acids, as neurotransmitters. Both adrenergic and serotonergic pathways have been recognized as targets for clinically relevant, centrally acting antihypertensives, such as clonidine, guanfacine, and α-methyl-DOPA. The central components of the hybrid drugs urapidil and ketanserin also involve serotonergic pathways and receptors. For urapidil the stimulation of 5-HT1A-receptors is assumed to induce peripheral sympathoinhibition, whereas for ketanserin the central mechanism is unknown in detail. More recently central imidazoline (I1) receptors have been proposed as the major target for the newer antihypertensives rilmenidine and moxonidine. Clonidine, however, is assumed to be mixed I1- and alpha2-receptor agonist. The distinction between central I1- and alpha2-receptors may potentially offer the design of new antihypertensives, acting like clonidine but with fewer side effects. Finally, the amino acid pathways should be considered as potential targets for centrally acting antihypertensives. Experimental compounds on this basis are available but clinical implications appear to be very remote. In the present survey an outline is given of the various pathways, neurotransmitters, and receptors involved in the central regulation of blood pressure. The different types of centrally acting antihypertensives are subsequently discussed on this basis.

Key Words

centrally acting antihypertensives serotonergic pathways imidazoline receptors rilmenidine moxonidine 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chalmers JP, Pilowsky PM. Brainstem and bulbospinal neurotransmitter systems in the control of blood pressure.J Hypertens 1991;9:675–694.PubMedGoogle Scholar
  2. 2.
    Chalmers J, Arnolda L, Kapoor V, Llewellyn-Smith I, Minson J, Pilowsky P. Amino acid neurotransmitters in the central control of blood pressure and in experimental hypertension.J Hypertens 1992;10(Suppl 7):S27-S37.Google Scholar
  3. 3.
    Chalmers JP. Brain amines and models of experimental hypertension.Circ Res 1975;36:469–480.PubMedGoogle Scholar
  4. 4.
    Hökfelt J, Fuxe K, Goldstein M, Johansson O. Immunohistochemical evidence for the existence of adrenaline neurons in the rat brain.Brain Res 1974;66:235–251.Google Scholar
  5. 5.
    Hökfelt T, Johansson O, Ljungdahl A, Lundberg JM, Schultzberg M. Peptidergic neurons.Nature 1980;284:515–521.PubMedGoogle Scholar
  6. 6.
    Arnolda L, Minson J, Kapoor V, Pilowsky P, Llewellyn-Smith I, Chalmers J. Amino acid neurotransmitters in hypertension.Kidney Int 1992;41(Suppl 37):S2-S7.Google Scholar
  7. 7.
    Minson JB, Chalmers JP, Caon AC, Renaud B. Separate areas of rat medulla oblongata with populations of serotonin- and adrenaline-containing neurons alter blood pressure after L-glutamate stimulation.J Autonom Nerv Syst 1987;19:39–50.Google Scholar
  8. 8.
    Cox BF, Brody MJ. Subregions of rostral ventral medulla control arterial pressure and regional hemodynamics.Am J Physiol 1989;257:R635-R640.PubMedGoogle Scholar
  9. 9.
    Millis EH, Minson JB, Chalmers JP. The affect of intrathecal serotonergic antagonists on the pressor response to stimulation of the brainstem in the rat.Clin Exp Hypertens 1988;A11:265–276.Google Scholar
  10. 10.
    Minson J, Chalmers J, Drolet G, et al. Central serotonergic mechanisms in cardiovascular regulation.Cardiovasc Drugs Ther 1989;4:27–32.Google Scholar
  11. 11.
    Minson JB, Choy V, Chalmers JP. Bulbospinal serotonin neurons and hypotensive effects of methyldopa in the spontaneously hypertensive rat.J Cardiovasc Pharmacol 1984;6:312–317.PubMedGoogle Scholar
  12. 12.
    Drolet G, Aslanian V, Minson J, Morris M, Chalmers J. Differences in the central hypotensive actions of methyldopa and clonidine in the spontaneously hypertensive rat: Contribution of neurons arising from the B3 and the C1 areas of the rostral ventrolateral medulla.J Cardiovasc Pharmacol 1990;15:118–123.PubMedGoogle Scholar
  13. 13.
    Van Zwieten PA. Different types of centrally acting antihypertensive drugs.Eur Heart J 1992;13(Suppl A):18–21.PubMedGoogle Scholar
  14. 14.
    Chalmers JP, Pilowsky PM, Minson JB, Kapoor V, Mills E, West MJ. Central serotonergic mechanisms in hypertension.Am J Hypertens 1988;1:79–83.PubMedGoogle Scholar
  15. 15.
    Leone C, Gordon FJ. Is L-glutamate a neurotransmitter of baroreceptor information in the nucleus of the tractus solitarius?J Pharmacol Exp Ther 1989;250:953–962.PubMedGoogle Scholar
  16. 16.
    Somogyi P, Minson JB, Morilak D, Llewellyn-Smith IJ, McIlhinney JRA, Chalmers JP. Evidence for an excitatory amino acid pathway in the brainstem and for its involvement in cardiovascular control.Brain Res 1989;496:401–407.PubMedGoogle Scholar
  17. 17.
    Gordon FJ. Aortic baroreceptor reflexes are mediated by NMDA receptors in caudal ventrolateral medulla.Am J Physiol 1987;252:R628-R633.PubMedGoogle Scholar
  18. 18.
    Blessing WW, Reis DJ. Inhibitory cardiovascular function of neurons in the caudal ventrolateral medulla of the rabbit: Relationship to the area containing A1 noradrenergic cells.Brain Res 1982;253:161–171.PubMedGoogle Scholar
  19. 19.
    Minson J, Pilowsky P, Llewellyn-Smith I, Kaneko T, Kapoor V, Chalmers J. Glutamate in spinally projecting neurons of the rostral ventral medulla.Brain Res 1991;555:326–331.PubMedGoogle Scholar
  20. 20.
    Morrison SF, Callaway J, Milner TA, Reis DJ. Glutamate in the spinal sympathetic intermediolateral nucleus: Localization by light and electron microscopy.Brain Res 1989;503:5–15.PubMedGoogle Scholar
  21. 21.
    Llewellyn-Smith IJ, Phend KD, Minson JB, Pilowsky PM, Chalmers JP. Glutamate-immunoreactive synapses on retrogradely-labelled sympathetic preganglionic neurons in rat spinal cord.Brain Res 1992;581:67–80.PubMedGoogle Scholar
  22. 22.
    Timmermans PBMWM. Centrally acting drugs. In: van Zwieten PA, ed.Handbook of Hypertension, Vol. 3. Pharmacology of Antihypertensive Drugs. Amsterdam: Elsevier 1984:102–153.Google Scholar
  23. 23.
    Schmitt H. Actions des alpha-sympathomimétiques sur les structures nerveuses.Actual Pharmacol 1971;24:93–97.Google Scholar
  24. 24.
    Sen S, Tarazi RC, Bumpus FM. Cardiac hypertrophy and antihypertensive therapy. Cardiovasc Res 1977;11:427–433.PubMedGoogle Scholar
  25. 25.
    Henning M. α-methyl-DOPA and related compounds. In: van Zwieten PA, ed.Handbook of Hypertension, Vol 3. Pharmacology of Antihypertensive Drugs. Amsterdam: Elsevier, 1984;154–193.Google Scholar
  26. 26.
    Whitsett TL, Chrysant SG, Dillard BL, Anton AH. Abrupt cessation of clonidine administration: A prospective study.Am J Cardiol 1978;41:1285–1290.PubMedGoogle Scholar
  27. 27.
    Van Zwieten PA. The classification of antihypertensive drugs. In: van Zwieten PA, ed.Handbook of Hypertension, Vol. 3. Pharmacology of Antihypertensive Drugs. Amsterdam: Elsevier, 1984:1–5.Google Scholar
  28. 28.
    Van Zwieten PA, Thoolen MJMC, Timmermans PBMWM. The pharmacological base of the hypotensive activity and side-effects of alpha-methyl-DOPA, clonidine and guanfacine.Hypertension 1984;6:11–28.Google Scholar
  29. 29.
    Van Zwieten PA. Overview of α2-adrenoceptor agonists with a central action.Am J Cardiol 1986;57:3E-5E.PubMedGoogle Scholar
  30. 30.
    Van Zwieten PA, Thoolen MJMC, Timmermans PBMWM. The hypotensive activity and side-effects of methyldopa, clonidine and guanfacine.Hypertension 1984;6(Suppl 11):28–33.Google Scholar
  31. 31.
    Blauw GJ, van Brummelen P, Chang PC, van Zwieten PA. Regional vascular effects of serotonin and ketanserin in young healthy subjects.Hypertension 1988;11:256–263.PubMedGoogle Scholar
  32. 32.
    Jie K, van Brummelen P, Vermeij P, et al. α1-And α2-adrenoceptor-mediated vasoconstriction in the forearm of normotensive and hypertensive subjects.J Cardiovasc Pharmacol 1986;8:190–196.PubMedGoogle Scholar
  33. 33.
    Cohen ML, Kurz KD, Maton MD, et al. Pharmacological activity of the isomers of LY 52587, a potent and selective 5-HT2-receptor antagonist.J Pharmacol Exp Ther 1985;235:319–325.PubMedGoogle Scholar
  34. 34.
    Blauw GJ, van Brummelen P, Doorenbos CJ, van der Velde EA, van Zwieten PA. The acute and chronic antihypertensive effects of ketanserin cannot be explained by blockade of vascular serotonin, type 2, receptors or α-adrenergic receptors.Clin Pharmacol Ther 1991;49:377–384.PubMedGoogle Scholar
  35. 35.
    Van Zwieten PA, Blauw GJ, van Brummelen P. Serotonergic receptors and drugs in hypertension.Pharmacol Toxicol 1992;70(Suppl II):S17-S22.PubMedGoogle Scholar
  36. 36.
    Kolassa N, Beller NK, Sanders KH. Involvement of brain 5-HT1A-receptors in the hypotensive response to urapidil.Am J Cardiol 1989;64:7D-10D.PubMedGoogle Scholar
  37. 37.
    Sanders KH, Beller KD, Eltze M, Kolassa N. Urapidil and some analogs with high affinities for serontonin1A and α1-adrenoceptor binding sites show potent hypotensive activity upon central administration.Curr Opin Cardiol 1989;4(Suppl 4):S49-S55.Google Scholar
  38. 38.
    Ramage A. The mechanism of the sympathoinhibitory action of urapidil: Role of 5-HT1A-receptors.Br J Pharmacol 1991;102:998–1002.PubMedGoogle Scholar
  39. 39.
    Doods HN, Boddeke HWGM, Kalkman HO, et al. Central 5-HT1A-receptors and the mechanism of the central hypotensive effect of (+)8-OH-DPAT, DP-5-CT, R 28935 and urapidil.J Cardiovasc Pharmacol 1988;11:432–437.PubMedGoogle Scholar
  40. 40.
    Dreteler GH, Wouters W, Saxena PR. Comparison of the cardiovascular effects of the 5-HT1A-receptor agonist flesinoxan with that of 8-OH-DPAT in the rat.Eur J Pharmacol 1990;180:339–349.PubMedGoogle Scholar
  41. 41.
    Schoetensack W, Bruckschen EG, Zech K. Urapidil. In:New Drugs Annual: Cardiovascular Drugs. Schriabine A, ed. New York: Raven Press, 1983:19–48.Google Scholar
  42. 42.
    Van Zwieten PA, Mathy MJ, Boddeke HWGM, Doods HN. Central hypotensive activity of ketanserin in cats.J Cardiovasc Pharmacol 1987;10(Suppl 3):S54-S58.Google Scholar
  43. 43.
    Gillis RA, Kellar KJ, Quest JA, et al. Experimental studies on the neurocardiovascular effect of urapidil.Drugs 1988;35(Suppl 6):20–33.Google Scholar
  44. 44.
    Fozard JR, Mir AK, Middlemiss DN. Cardiovascular response to 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) in the rat: Site of action and pharmacological analysis.J Cardiovasc Pharmacol 1987;9:328–347.PubMedGoogle Scholar
  45. 45.
    Gross G, Hanft G, Kolassa N. Urapidil and some analogues with hypotensive properties show high affinities for 5-hydroxy-tryptamine (5HT) binding sites of the 5-HT1A-subtype and for α1-adrenoceptor binding sites.NS Arch Pharmacol 1987;336:597–601.Google Scholar
  46. 46.
    McCall R, Patel BN, Harris LT. Effects of serotonin, receptor agonists and antagonists on blood pressure, heart rate and sympathetic nerve activity.J Pharmacol Exp Ther 1987;242:1152–1159.PubMedGoogle Scholar
  47. 47.
    Prichard BNC, Tomlinson B, Renondin JC. Urapidil, a multiple action α-blocking drug.Am J Cardiol 1989;64:11D-15D.PubMedGoogle Scholar
  48. 48.
    Amery A, Kaneko Y, Prichard BNC, Ribeiro AB. International symposium on urapidil.Drugs 1988;35(Suppl 6):1–192.Google Scholar
  49. 49.
    Langtry HD, Mammen GJ, Sorkin EM. Urapidil. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in the treatment of hypertension.Drugs 1989;38:900–940.PubMedGoogle Scholar
  50. 50.
    Van Nueten JM, Janssen PAJ, van Beek J, Xhonneux R, Verbeuren TJ, Vanhoutte PM. Vascular effects of ketanserin (R 42468), a novel antagonist at 5-HT2-serotonergic receptors.J Pharmacol Ther 1981;218:217–230.Google Scholar
  51. 51.
    Dragstedt N, Boeck V. Cardiovascular effects of irindalone, a novel 5-HT2-receptor antagonist with antihypertensive activity. International Symposium on Serotonin, Florence, March 1989, abstract book, p 138.Google Scholar
  52. 52.
    Copeland IW, Bentley GA. A possible central action of prazosin and ketanserin to cause hypertension.J Cardiovasc Pharmacol 1985;7:822–825.PubMedGoogle Scholar
  53. 53.
    Van Zwieten PA, Mathy MJ, Boddeke HWGM, Doods HN. Central hypotensive activity of ketanserin in cats.J Cardiovasc Pharmacol 1987;10:S54-S59.Google Scholar
  54. 54.
    Breckenridge A. Ageing, serotonin and ketanserin.Drugs 1988;36(Suppl 1):44–55.PubMedGoogle Scholar
  55. 55.
    Robertson JIS, Scott DJ, Ball SG. The serotonin antagonist ketanserin in the treatment of clinical hypertension: A short review.J Hypertens 1986;4(Suppl 5):S119-S121.Google Scholar
  56. 56.
    Michel MC, Ernsberger P. Keeping an eye on the I site: Imidazoline-preferring receptors.Trends Pharmacol Sci 1992;13:369–370.PubMedGoogle Scholar
  57. 57.
    Gomex RE, Ernsberger P, Feinland G, Reis D. Rilmenidine lowers arterial pressure via imidazole receptors in brain stem C1 area.Eur J Pharmacol 1991;195:181–191.PubMedGoogle Scholar
  58. 58.
    Head GA, Saunajust F. Importance of imidazoline receptors in the cardiovascular response to clonidine and rilmenidine in conscious rabbits.Fundam Clin Pharmacol 1992;6(Suppl I):31S-34S.PubMedGoogle Scholar
  59. 59.
    Tibiriça E, Feldman J, Mermet C, Gonon F, Bousquet P. An imidazoline-specific mechanism for the hypotensive effect of clonidine: A study with yohimbine and idazoxan.J Pharmacol Exp Ther 1991;256:606–613.PubMedGoogle Scholar
  60. 60.
    Dollery CT. Rilmenidine in mild to moderate hypertension. A double-blind, randomised, parallel group multicenter comparison with methyldopa in 157 patients.Curr Ther Res 1990;47:194–221.Google Scholar
  61. 61.
    Harron DWG. Clinical pharmacology of imidazolines and related compounds.Fundam Clin Pharmacol 1992;6(Suppl I):41S-44S.PubMedGoogle Scholar
  62. 62.
    Parini A, Bousquet P. From α2-adrenoceptors to imidazoline preferring receptors.Fundam Clin Pharmacol 1992;6(Suppl I):1S-63S.Google Scholar
  63. 63.
    Ernsberger P, Westbrooks KL, Christen MO, Schäfer SG. A second generation of centrally acting antihypertensives acts on putative I1-imidazoline receptors.J Cardiovasc Pharmacol 1992;20(Suppl 4):S1-S10.Google Scholar
  64. 64.
    Chrisp P, Faulds D. Moxonidine.Drugs 1992;44:993–1012.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • P. A. van Zwieten
    • 1
  • J. P. Chalmers
    • 2
  1. 1.Departments of Pharmacotherapy and Cardiology, Academic Medical Centre and Academic HospitalUniversity of AmsterdamAmsterdamThe Netherlands
  2. 2.Department of MedicineFlinders Medical CenterBedford ParkAustralia

Personalised recommendations