Cardiovascular Drugs and Therapy

, Volume 8, Supplement 2, pp 319–325 | Cite as

Left ventricular function and prognosis after myocardial infarction: Rationale for therapeutic strategies

  • R. Scognamiglio
  • G. Fasoli
  • S. Nistri
  • M. Marin
  • S. Dalla Volta


Prognosis after acute myocardial infarction is strongly associated with left ventricular dysfunction. However, asynergy does not necessarily imply loss of viability and myocardial necrosis. In fact, two different patterns of contractile dysfunction, possibly coexisting, have been shown after acute myocardial infarction: Stunning and hibernation represent distinct patterns of contractile dysfunction that share the character of reversibility. It is noteworthy, then, to identify the presence of these two conditions at the bedside and to develop medical treatment to effect recovery of myocardial dysfunction. This strategy has the potential to ameliorate the outcome of patients after acute myocardial infarction by improving left ventricular function. Beta-blocker therapy significantly reduces mortality and the incidence of reinfarction after an acute myocardial infarction: These benefits result from the prevention of sudden death, the reduction of the extent of myocardial injury during the acute phase, and a further antiischemic action. Nevertheless, beta-blocker therapy increases left ventricular dilatation. Recent experimental and clinical data show that ACE inhibitors confer positive therapeutic effects after myocardial infarction by reducing the extent of left ventricular dilation, by reducing mortality, and by improving the clinical outcome. Not all patients, however, can be subjected to this therapeutical approach because of the possible detrimental effects produced by hypotension and by block of neurohormonal activation, sometimes truly compensatory in the early phase. Therefore, it would be interesting to suggest a combination therapy of a beta-blocker with a vasodilator agent (ACE inhibitor or calcium-channel blocker).

Key words

myocardial function hibernation left ventricle remodeling silent ischemia 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    The Multicenter Postinfarction Research Group. Risk stratification and survival after myocardial infarction.N Engl J Med 1983;309:331–336.Google Scholar
  2. 2.
    Stadius ML, Davis K, Maymard C, Ritchie JL, Kennedy JW. Risk stratification for 1 year survival based on characteristics identified in the early hours for acute myocardial infarction. The Western Washington Intracoronary Streptokinase Trial.Circulation 1986;74:703–711.Google Scholar
  3. 3.
    Pierard LA, Ibert A, Chappelle JP, Carlier J, Kulbertus HE. Relative prognostic value of clinical, biochemical, echocardiographic and haemodynamic variables in predicting inhospital and one-year cardiac mortality after acute myocardial infarction.Eur Heart J 1989;10:24–31.Google Scholar
  4. 4.
    Weiner JM, Apstein CS, Arthur JH, Pizzada FA, Hood WB Jr. Persistence of myocardial injury following brief periods of coronary occlusion.Cardiovasc Res 1976;10:678–686.Google Scholar
  5. 5.
    Bolli R, Patel BS, Hartley CJ, Thomby JI, Jerondi MO, Roberts R. Nonuniform transmural recovery of contractile function in the “stunned” myocardium.Am J Physiol 1989;257:H375-H385.Google Scholar
  6. 6.
    Patel B, Kloner RA, Przyklenk K, Braunwald E. Postischemic myocardial “stunning”: A clinically relevant phenomenon.Ann Intern Med 1988;108:626–628.Google Scholar
  7. 7.
    Rahimtoola SH. A perspective on the three large multicenter randomized clinical trials of coronary bypass surgery for chronic stable angina.Circulation 1985;75(Suppl V):V123-V135.Google Scholar
  8. 8.
    Braunwald E, Rutherford JD. Reversible ischemic left ventricular dysfunction. Evidence for the “hibernating myocardium.”J Am Coll Cardiol 1986;8:1467–1470.Google Scholar
  9. 9.
    Homans DC, Laxson DD, Sublett E, Lindstrom P, Bache RJ. Cumulative deterioration of myocardial function after repeated episodes of exercise-induced ischemia.Am J Physiol 1988:;256:H1462-H1471.Google Scholar
  10. 10.
    Cohn PF. Silent myocardial ischemia: Classification, prevalence and prognosis.Am J Med 1985;98(Suppl 37):2–12.Google Scholar
  11. 11.
    Gottlieb SO, Weisfeldt ML, Ouyang P, Mellits ED, Gerstenblith G. Silent ischemia as a marker for early unfavorable outcomes in patients with unstable angina.N Engl J Med 1986;314:1214–1219.Google Scholar
  12. 12.
    Gottlieb SO, Gottlieb SH, Achuff SC. Silent ischemia on Holter monitoring predicts mortality in high-risk patients with previous myocardial infarction.JAMA 1988;259:1030–1038.Google Scholar
  13. 13.
    Tzivoni D, Gavish A, Gottlieb S. Prognostic significance of ischemic episodes in patients with previous myocardial infarction.Am J Cardiol 1988;62:661–664.Google Scholar
  14. 14.
    Ouyang P, Chandra NC, Gottlieb SO. Frequency and importance of silent myocardial ischemia identified with ambulatory electrocardiographic monitoring in the early in-hospital period after acute myocardial infarction.Am J Cardiol 1990;65:267–270.Google Scholar
  15. 15.
    Geft IL, Fishbein MC, Ninomiya K. Intermittent brief periods of ischemia have a cumulative effect and may cause myocardial necrosis.Circulation 1982;66:1150–1153.Google Scholar
  16. 16.
    Hess OM, Schneider J, Nonogi H. Myocardial structure in patients with exercise-induced ischemia.Circulation 1988;77:977–982.Google Scholar
  17. 17.
    Scognamiglio R, Fasoli G, Nistri S, et al. Silent ischemia and loss of reversible myocardial dysfunction following myocardial infarction.Clin Cardiol 1993;16:654–659.Google Scholar
  18. 18.
    Helfant RH, Pine R, Meister SG, Feldman MS, Trout RG, Banka VS. Nitroglycerin to unmask reversible asynergy. Correlation with postcoronary bypass ventriculography.Circulation 1974;50:108–112.Google Scholar
  19. 19.
    Nesto RW, Cohn LH, Collins JJ, Wynne J, Holman L, Cohn PF. Inotropic contractile reserve: A useful predictor of increased 5 year survival and improved postoperative left ventricular function in patients with coronary artery disease and reduced ejection fraction.Am J Cardiol 1982;50:39–46.Google Scholar
  20. 20.
    Scognamiglio R, Fasoli G, Ponchia A, Dalla Volta S. Detection of irreversible myocardial damage in heart failure.Circulation 1991;84(Suppl II):II563.Google Scholar
  21. 21.
    Dyke SH, Cohn RF, Gorlin R, Sonnenblick EH. Detection of irreversible myocardial damage in heart failure.Circulation 1974;50:694–699.Google Scholar
  22. 22.
    Cooper MW, Lutherer LO, Stanton MV, Lust RM. Postextrasystolic potentiation: Regional wall motion before and after revascularization.Am Heart J 1986;111:334–339.Google Scholar
  23. 23.
    Anderson PAW. Force-interval relationship in activator calcium availability: Similarities of sympathetic stimulation and hypertrophy and heart failure. In: Legato MJ, ed.The Stressed Heart. Boston: Martinus Nijhoff, 1987:169–218.Google Scholar
  24. 24.
    Ross J Jr. Myocardial perfusion-contraction matching. Implications for coronary heart disease and hibernation.Circulation 1991;83:1076–1083.Google Scholar
  25. 25.
    Sabia P, Kaul S, Ragosta M, Tedesco CL, Burwell LR, Powers ER. How long after acute myocardial infarction does the myocardium remain viable?J Am Coll Cardiol 1991;17:45A.Google Scholar
  26. 26.
    Fragasso G, Chierchia SL, Landoni C, et al. Infarct-related vessel patency does not influence residual tissue viability in patients with myocardial infarction treated with thrombolysis.Eur Heart J 1991;12S:321.Google Scholar
  27. 27.
    Picard MH, Wilkins GT, Ray PA, Weyman AE. Natural history of left ventricular size and function after acute myocardial infarction.Circulation 1990;82:484–494.Google Scholar
  28. 28.
    Montalescot G, Faraggi M, Crobinski G, et al. Myocardial viability in patients with Q wave myocardial infarction and no residual ischemia.Circulation 1992;86:47–55.Google Scholar
  29. 29.
    Scognamiglio R, Nistri S, Fasoli G, et al. Reversible and irreversible left ventricular dysfunction after acute myocardial infarction.J Cardiovasc Pharmacol 1992;20(Suppl 5):S68-S72.Google Scholar
  30. 30.
    Stinson EB, Billingham ME. Correlative study of regional left ventricular histology and contractile function.Am J Cardiol 1977;39:378–384.Google Scholar
  31. 31.
    Rahimtoola SH. The hibernating myocardium.Am Heart J 1989;117:211–221.Google Scholar
  32. 32.
    Braunwald E, Rutherford JD. Reversible ischemic left ventricular dysfunction: Evidence for the “hibernating myocardium.”J Am Coll Cardiol 1986;8:467–470.Google Scholar
  33. 33.
    Schulz R, Guth BD, Pieper K, Martin C, Heusch G. Recruitment of an inotropic reserve in moderately ischemic myocardium at the expense of metabolic recovery. A model of short-term hibernation.Circ Res 1992;70:1282–1295.Google Scholar
  34. 34.
    Hjalmarson A. Cardioprotection after myocardial infarction.Clin Cardiol 1991;14(Suppl III):III40-III44.Google Scholar
  35. 35.
    Kjekshus J. Heart rate reduction: A mechanism of benefit?Eur Heart J 1987;8(Suppl L):115–119.Google Scholar
  36. 36.
    Frishman WH, Furberg CD, Friedewald WT. Beta-adrenergic blockade for survivors of acute myocardial infarction.N Engl J Med 1984;310:830–837.Google Scholar
  37. 37.
    Pfeffer MA, Braunwald E, Moye LA, et al. Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction. Results of the Survival And Ventricular Enlargement trial.N Engl J Med 1992;327:669–677.Google Scholar
  38. 38.
    Swedberg K, Held P, Kjekshus J, Rasmussen K, Ryden L, Wedel H. Effects of the early administration of enalapril on mortality in patients with acute myocardial infarction. Results of the Cooperative New Scandinavian Enalapril Survival Study II (CONSENSUS II).N Engl J Med 1992;327:678–684.Google Scholar
  39. 39.
    Sogaard P, Gotzsche CO, Ravkilde J, Thygesen K. Effect of captopril on ischemia and dysfunction of the left ventricle after myocardial infarction.Circulation 1993;87:1093–1099.Google Scholar
  40. 40.
    Liang CS, Gauras H, Hood WB. Renin-angiotensin system in conscious sodium-depleted dogs: Effect on systemic and coronary haemodynamics.J Clin Invest 1978;62:874–889.Google Scholar
  41. 41.
    Kimball BP, Watson KR, Bui S, Frankel D. Preservation of left ventricular performance with reduced ischemic dysfunction by intravenous nisoldipine.Am J Cardiol 1990;66:400–405.Google Scholar
  42. 42.
    Rousseau MF, Vincent MF, Van Hoof F, Van den Berghe G, Charlier AA, Pouleur H. Effects of nicardipine and nisoldipine on myocardial metabolism, coronary blood flow and oxygen supply in angina pectoris.Am J Cardiol 1984;54:1189–1194.Google Scholar
  43. 43.
    Przyklenk K, Kloner R. Calcium antagonists and stunned mycoardium: Importance for clinicians?Cardiovasc Drugs Ther 1991;5:947–952.Google Scholar
  44. 44.
    Salmasi AM. Nisoldipine in occult ischemic heart disease. In: Lichtlen PR, Krayenbuhl HP, eds.New Aspects on Nisoldipine. Schattauer: Verlagsgesellschaft, 1990:29–38.Google Scholar
  45. 45.
    Duncker DJ, Heiliger JPC, Verdouw PD, Saxena PR. Exercise-induced myocardial ischemia in pigs: Cardiovascular actions of nisoldipine with or without beta-adrenoceptor blockade.Drugs Dev Res 1989;16:13–22.Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • R. Scognamiglio
    • 1
  • G. Fasoli
    • 1
  • S. Nistri
    • 1
  • M. Marin
    • 1
  • S. Dalla Volta
    • 1
  1. 1.Cattedra di CardiologiaUniversita' degli Studi di PadovaPadovaItaly

Personalised recommendations