Aquatic Sciences

, Volume 55, Issue 4, pp 314–323 | Cite as

Solid-solute phase equilibria: From thermodynamic basis information to multicomponent systems

Dedicated to Paul W. Schindler on his retirement
  • Heinz Gamsjäger


Solubility equilibria in aqueous media are a powerful source of information on Gibbs energy functions of pure ionic compounds and solid-solutions. Because solid-solid phase transformations and/or recrystallizations are often much slower than equilibration between solids and solutes, it is sometimes possible to obtain reliable data from measurements on metastable systems.

Thermodynamic quantities of geochemically and industrially important sparingly soluble metal oxides, hydroxides, carbonates and sulfides have been determined by solubility techniques. Activity coefficient variations of the reacting species are either minimized by the method of constant ionic media, or else corrected for by using the Pitzer equations. Measurements carried out at various fixed ionic strengthsI may be used to calculate the value of the solubility constantK s 0 at infinite dilution. Given the availability of Pitzer parameters of sufficient quality, values ofK s 0 extrapolated by this method lead to accurate Gibbs energies of formation. Moreover, when Pitzer parameters are known up to saturation, solubilities of highly soluble salts can easily be exploited for the calculation of Gibbs functions.

A consistent set of equilibrium constants for the homogeneous and heterogeneous reactions occurring in the systems under investigation is used in the general Gibbs energy minimizing program ChemSage. Master variables for the depiction of the pertinent solid-solute phase diagrams are deduced from generalized Gibbs-Duhem equations. Application of the resulting data to geochemical and industrial problems is discussed.

Key words

Solubility equilibria metastable states Gibbs energies ionic compounds solid-solutions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bale, C.W. and A.D. Pelton, 1990. The Unified Interaction Parameter Formalism: Thermodynamic consistency and applications. Metall. Trans. A, 21 A:1997–2002.Google Scholar
  2. Biederman, G. and P. Schindler, 1957. On the solubility product of precipitated iron(III) hydroxide. Acta Chem. Scand. 11:731–740.Google Scholar
  3. Bischoff, W.D., F.T. Mackenzie and F.C. Bischop, 1987. Stabilities of synthetic magnesian calcites in aqueous solution: Comparison with biogenic materials. Geochim. Cosmochim. Acta 51:1413–1423.Google Scholar
  4. Busenberg, E. and L.N. Plummer, 1989. Thermodynamics of magnesian calcite solid-solutions at 25°C and 1 atm total pressure. Geochim. Cosmochim. Acta 53:1189–1208.Google Scholar
  5. Ciavatta L., D. Ferri, I. Grenthe, S. Hietanen, F. Salvatore and K. Spahiu, 1981. Studies on metal carbonate equilibria. 3. The lanthanum(III) carbonate complexes in aqueous perchlorate media. Acta Chem. Scand. A 37:359–365.Google Scholar
  6. Eriksson, G. and K. Hack, 1990. ChemSage — A computer program for the calculation of complex chemical equilibria. Metall. Trans. B, 21 B:1013–1023.Google Scholar
  7. Gamsjäger, H., H.U. Stuber and P. Schindler, 1965. Zur Thermodynamik der Metallcarbonate — 1. Mitt.: Löslichkeitskonstanten und freie Bildungsenthalpie von Cadmiumcarbonat, ein Beitrag zur Thermodynamik des ternären Systems Cd(aq)2+-H2O(l)-CO 2(g). Helv. Chim. Acta 48:723–729.Google Scholar
  8. Gamsjäger, H., W. Kraft and W. Rainer, 1966. Löslichkeitskonstanten und freie Bildungsenthalpien von Metallsulfiden, 2. Mitt.: Die Bestimmung von ΔG Tl2s aus Potential- und Löslichkeitsmessungen. Monatsh. Chem. 97:833–845.Google Scholar
  9. Gamsjäger, H. and F. Reiterer, 1979. Investigation of equilibria involving carbon dioxide, carbonates and water. Environment International 2:419–424.Google Scholar
  10. Gamsjäger, H., 1985. Solid state chemical model for the solubility behaviour of homogenous solid Co-Mncarbonate mixtures. Ber. Bunsenges. Phys. Chem. 89: 1318–1322.Google Scholar
  11. Grenthe, I., K. Spahiu and T. Eriksen, 1992. Analysis of the solubility equilibria of yttrium carbonate in aqueous perchlorate media using the Pitzer and Brønsted—Guggenheim—Scatchard ion-interaction models. J. Chem. Soc. Faraday Trans. 88:1267–1273.Google Scholar
  12. Greenberg, J.P., N. and Møller, 1989. The prediction of mineral solubilities in natural waters: A chemical equilibrium model for the Na-K-Ca-Cl-SO4-H2O system to high concentration from 0 to 250°C. Geochim. Cosmochim. Acta 53:2503–2518.Google Scholar
  13. Kim, H.-T. and W.J. Frederick Jr., 1988. Evaluation of Pitzer ion interaction parameters of aqueous electrolytes at 25°C. II. Ternary mixing parameters. J. Chem. Eng. Data 33:278.Google Scholar
  14. Königsberger, E., J. Bugajski and H. Gamsjäger, 1989. Solid-solute phase equilibria in aqueous solution: II. A potentiometric study of the aragonite-calcite transition. Geochim. Cosmochim. Acta 53: 2807–2810.Google Scholar
  15. Königsberger, E. and H. Gamsjäger, 1990. Solid-solute phase equilibria in aqueous solution. III. A new application of an old chemical potentiometer. Marine Chemistry 30:317–327.Google Scholar
  16. Königsberger, E. and Gamsjäger H., 1991. Graphical representation of solid-solute phase equilibria in aqueous solution. Ber. Bunsenges. Phys. Chem. 95:734–737.Google Scholar
  17. Königsberger, E., R. Hausner and H. Gamsjäger, 1991. Solid-solute phase equilibria in aqueous solution. V. The system Cd2+—Ca2+—CO2—H2O. Geochim. Cosmochim. Acta 55:3505–3514.Google Scholar
  18. Königsberger, E. and H. Gamsjäger, 1992. Comment: Solid-solution aqueous-solution equilibria: Thermodynamic theory and representation. Am. J. Sci. 292: 199–214.Google Scholar
  19. Königsberger, E. and H. Gamsjäger, 1992a. Solid-solute phase equilibria in aqueous solution. VII. A reinterpretation of magnesian calcite stabilities. Geochim. Cosmochim. Acta 56:4095–4098.Google Scholar
  20. Königsberger, E., E. Schuster, H. Gamsjäger, C. God, K. Hack, M. Kowalski and P.J. Spencer, 1992. Thermochemical data and software for the optimization of processes and materials. Netsu Sokutei 19: 135–144.Google Scholar
  21. Lippmann, F., 1980. Phase diagrams depicting aqueous solubility of binary mineral systems. N. Jb. Miner. Abh. 139:1–25.Google Scholar
  22. Makarov, L. L. and D. Yu. Stupin, 1961. The free energy of formation of potassium iodide-rubidium iodide solid-solutions at 25°C. Russ. J. Phys. Chem. 35:363–364.Google Scholar
  23. Mucci, A. and J.W. Morse, 1983. The incorporation of Mg2+ and Sr2+ into calcite overgrowths: influences of growth rate and solution composition. Geochim. Cosmochim. Acta 47:217–233.Google Scholar
  24. Oonk, H.A.J., 1981. Phase Theory. Elsevier Scientific Publishing Company, Amsterdam-Oxford-New York, 71 pp.Google Scholar
  25. Schindler, P., 1959. Löslichkeitsprodukte von Metalloxyden und —hydroxyden. 3. Mitteilung: Die Freie Bildungsenthalpie des Thallium(III)-oxydes. Helv. Chim. Acta. 42:577–579.Google Scholar
  26. Schindler, P., 1963. Die Bestimmung der Löslichkeitskonstanten von Metalloxiden und -hydroxiden. Chimia 17:313–330.Google Scholar
  27. Schindler, P., H. Althaus and W. Feitknecht, 1964. Löslichkeitsprodukte von Metalloxiden und -hydroxiden 9. Mitteilung: Löslichkeitsprodukte und Freie Bildungsenthalpien von Zinkoxid, amorphem Zinkhydroxid,β 1-,β 2-,γ-,δ- andɛ-Zinkhydroxid. Helv. Chim. Acta 47:982–991.Google Scholar
  28. Schindler, P., M. Reinert and H. Gamsjäger, 1968. Zur Thermodynamik der Metallcarbonate — 2. Mitt.: Löslichkeitskonstanten und freie Bildungsenthalpien von Cu2(OH)2CO3 (Malachit) und Cu3(OH)2(CO3)2 (Azurit) bei 25°C. Helv. Chim. Acta 51:1845–1856.Google Scholar
  29. Schmalzried, H. and A.D. Pelton, 1973. Zur geometrischen Darstellung von Phasengleichgewichten, Ber. Bunsenges. Phys. Chem. 77:90–94.Google Scholar
  30. Thorstenson, D.C. and L.N. Plummer, 1977. Equilibrium criteria for two component solids reacting with fixed composition in aqueous phase — example: the magnesian calcites. Am. J. Sci. 277:1203–1223.Google Scholar

Copyright information

© Birkhäuser Verlag 1993

Authors and Affiliations

  • Heinz Gamsjäger
    • 1
  1. 1.Abteilung für Physikalische ChemieMontanuniversität LeobenLeobenAustria

Personalised recommendations