Aquatic Sciences

, Volume 54, Issue 1, pp 58–76 | Cite as

Nutrient-chlorophyll trajectories across trophic gradients

  • Knut L. Seip
  • Hein Sas
  • Steven Vermij
Article

Abstract

We estimate the response of chl-a (mg · m−3) to changes in concentrations of total phosphorus (TP) by calculating the slopeS = Δchl-a/ΔTP in chl-a =f(TP) graphs. Results show that in years where algae are P-limited oligotrophic lakes respond less (median slope 0.21) to changes in nutrient concentrations than eutrophic lakes, (median slope 0.31) and these again less than hypereutrophic lakes, (median slope 1.02). We find no saturation value for the slope within the TP range considered (6–480 mg · m−3). Chl-a in eutrophic lakes responds more frequently to non-nutrient factors than oligotrophic and hypereutrophic lakes. Results obtained by replacing TP with a new nutrient parameter, TP′ = 0.056 · TP · IN0.226, in which inorganic nitrogen, IN, is factored in, suggest that nitrogen has an influence on chl-a in oligotrophic lakes. Blue-green algae respond less to changes in TP than other algal species, e.g., diatoms.

Key words

Eutrophication lake management phosphorus nitrogen chlorophyll-a slope estimator 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Conover, W. J., 1980. Practical nonparametric statistics. John Wiley and Sons, 493 p.Google Scholar
  2. Dietz, E. J., 1989. Teaching regression in a nonparametric statistical course. American Statistican. 43:35–40.Google Scholar
  3. Edmondson, W. T., 1980. Secchi disk and chlorophyll. Limnol. Oceanogr. 25:378–379.Google Scholar
  4. Edmondson, W. T. and J. T. Lehman, 1981. The effect of changes in the nutrient income on the condition of Lake Washington. Limnol. Oceanogr. 26:1–29.Google Scholar
  5. Elser, J. J., E. R. Marzolf, and C. R. Goldman, 1990. Phosphorus and nitrogen limitation of phytoplankton growth in freshwaters of North America: A review and critique of experimental enrichments. Can. J. Fish. Aquat. Sci. 47:1468–1477.Google Scholar
  6. Jeppesen, E., J. P. Jensen, P. Kristensen, M. Søndergaard, E. Mortensen, O. Sortkjaer, and K. Olrik, 1990. Fish manipulation as a lake restoration tool in shallow, eutrophic, temperate lakes 2: treshold levels, long-term stability and conclusions. Hydrobiologia. 200/201:219–227.Google Scholar
  7. Lehman, J. T., 1986. The goal of understanding in limnology. Limnol. Oceanogr. 31:1160–1166.Google Scholar
  8. Lyche, A., 1990. Cluster analysis of plankton community structure in 21 lakes along a gradient of trophy. Verh. Internat. Verein. Limnol. 24:586–591.Google Scholar
  9. Mazumder A., W. D. Taylor, D. J. McQueen, and D. R. S. Lean. 1990. Effects of fish and plankton on lake temperature and mixing depth. Science. 247:312–315.Google Scholar
  10. McCauley, E., J. A. Downing, and S. Watson, 1989. Sigmoid relationships between nutrients and chlorophyll among lakes. Can. J. Fish. Aquat. Sci. 46:1171–1175.Google Scholar
  11. McCauley, E. and W. W. Murdoch, 1990. Predator-prey dynamics in environments rich and poor in nutrients. Nature. 343:455–457.Google Scholar
  12. OECD, 1982. Eutrophication of waters. Monitoring, assessment and control. Paris, OECD, 154 p.Google Scholar
  13. Prairie, Y. T., C. M. Duarte, and J. Kalff, 1989. Unifying nutrient-chlorophyll relationships in lakes. Can. J. Fish. Aquat. Sci. 46:1176–1182.Google Scholar
  14. Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, 1986. Numerical recipes. Cambridge, Cambridge University Press, 818 p.Google Scholar
  15. Sakamoto, M., 1966. Primary production by phytoplankton community in some Japanese lakes and its dependence on depth. Arch. Hydrobiol. 62:1–28.Google Scholar
  16. Sas, H. (Coor.), 1989. Lake restoration by reduction of nutrient loading: expectations, experiences, extrapolations. Sankt Augustin, Academia-Verlag. Richarz.Google Scholar
  17. Scheffer, M., 1990. Multiplicity of stable states in freshwater systems. Hydrogiologia 200/201:475–486.Google Scholar
  18. Schindler, D., 1971. A hypothesis to explain differences and similarities among lakes in the experimental lakes area, northwestern Ontario. J. Fish. Res. Board Can. 28:295–301.Google Scholar
  19. Seip, K. L., 1991. The ecosystem of a mesotrophic lake-I. Simulating plankton biomass and the timing of phytoplankton blooms. Aquatic Sciences 53:239–262.Google Scholar
  20. Seip, K. L., H. Sas, and S. Vermij, 1990. The short term response to eutrophication abatement. Aquatic Sciences 52:199–220.Google Scholar
  21. Smith, S. V., 1984. Phosphorus versus nitrogen limitation in the marine environment. Limnol. Oceanogr. 29:1149–1160.Google Scholar
  22. Smith, V. H. and J. Shapiro, 1981. Chlorophyll-phosphorus relations in individual lakes. Their importance to lake restoration strategies. Environmental Science and Technology 1981: 444–451.Google Scholar
  23. Smith, V. H., E. Willén, and B. Karlsson, 1987. Predicting the summer peak biomass of four species of blue-green algae (cyanophyta/cyanobacteria) in Swedish lakes. Water Resources Bull. 23: 397–402.Google Scholar
  24. Smith, V. H., 1990. Effects of nutrients and non-algal turbidity on blue-green algal biomass in four North Carolina reservoirs. Lake and reservoir management. 6:125–131 (in press).Google Scholar
  25. Sterner, R. W., 1990. Lake morphometry and light in the surface layer. Can. J. Fish. Aquat. Sci. 47:687–692.Google Scholar
  26. Straskraba, M., 1978. Theoretical considerations on eutrophication. Verh. Internat. Verein. Limnol. 20:2714–2720.Google Scholar
  27. Suttle, C. A. and P. J. Harrison, 1988. Ammonium and phosphate uptake rates, N:P supply ratios and evidence for N and P limitation in some oligotrophic lakes. Limnol. Oceanogr. 32(2):186–202.Google Scholar
  28. Theil, H., 1950. A rank-invariant method of linear and polynomial regression analysis. Indagationes Mathematicae 12:85–91.Google Scholar
  29. Walters, C. J., D. C. E. Robinson, and T. G. Northcote, 1990. Comparative population dynamics ofDaphnia rosea andHolopedium gibberum in four oligotrophic lakes. Can. J. Fish. Aquat. Sci. 47:401–409.Google Scholar
  30. Yuzhu, H., J. Smeyers-Verbeke, and D. L. Massart, 1990. Outlier detection in calibration. Chemometrics and Intelligent Laboratory Systems 9:31–44.Google Scholar

Copyright information

© Birkhäuser Verlag 1992

Authors and Affiliations

  • Knut L. Seip
    • 1
  • Hein Sas
    • 2
  • Steven Vermij
  1. 1.Senter for industriforskningOslo 3Norway
  2. 2.IMSA Instituut voor Milieu- en SystemenanalyseAmsterdamThe Netherlands

Personalised recommendations