Advertisement

Aquatic Sciences

, Volume 55, Issue 1, pp 31–39 | Cite as

Fossil carotenoids and paleolimnology of meromictic Mahoney Lake, British Columbia, Canada

  • Jörg Overmann
  • Gerhard Sandmann
  • Ken J. Hall
  • Tom G. Northcote
Article

Abstract

Vertical distribution of fossil carotenoids in a sediment core from meromictic Mahoney Lake was studied. Besides okenone and demethylated okenone, lutein and zeaxanthin andβ-carotene isomers were identified. No carotenoids typical for purple nonsulfur or green sulfur bacteria were detected. The ratio of zeaxanthin to lutein (above 1:1 in all samples) indicates a dominance of cyanobacteria over green algae in the phytoplankton assemblages of the past. Okenone, which is found exclusively in Chromatiaceae, was the dominating carotenoid in all sediment zones.

The oldest sediment layers containing okenone were deposited 11 000 years ago. Between 9000 and 7000 and since 3000 years b.p., Chromatiaceae reached a considerable biomass in the lake. Vertical changes in okenone concentration were not related to changes of paleotemperatures. In contrast, okenone concentrations decreased during periods of volcanic ash input. During most of the lake history, however, mean okenone concentrations were positively correlated with sedimentation rates. This indicates that vertical changes of okenone concentration in the sediment reflect past changes of purple sulfur bacterial biomass in the lake.

According to these results, the past limnology of Mahoney Lake resembled that of the present with a sulfide-containing monimolimnion and a well-developed population of okenone-bearing purple sulfur bacteria.

Key words

Paleolimnology fossil pigments carotenoids okenone photosynthetic bacteria meromixis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brown S. R., H. J. McIntosh, J. P. Smol, 1984. Recent paleolimnology of a meromictic lake: Fossil pigments of photosynthetic bacteria. Verh. Int. Ver. Limnol. 22:1357–1360.Google Scholar
  2. Caumette P., K. Schmidt, H. Biebl, N. Pfennig, 1985. Characterization of aThiocapsa strain containing okenone as major carotenoid. System. Appl. Microbiol. 6:132–136.Google Scholar
  3. Caumette P., R. Baulaigue, R. Matheron, 1991.Thiocapsa halophila sp. nov., a new halophilic phototrophic purple sulfur bacterium. Arch. Microbiol. 155:170–176.Google Scholar
  4. Davies B. H., 1976. Carotenoids. In: Goodwin TE (ed) Chemistry and biochemistry of plant pigments, Vol. 2, Academic Press, London, p. 38–165.Google Scholar
  5. Eichler B., N. Pfennig, 1988. A new sulfur bacterium from stratified freshwater lakes,Amoebobacter purpureus. Arch. Microbiol. 149:395–400.Google Scholar
  6. Ernst S., G. Sandmann, 1988. Poly-cis carotene pathway in theScenedesmus mutant C-6D. Arch. Microbiol. 150:590–594.Google Scholar
  7. Goodwin T. W., 1980. The biochemistry of the carotenoids, Vol. I, Plants. Chapman and Hall, London, New York, 377 pp.Google Scholar
  8. Lamb H. H., 1977. Climate. Present, past and future. Vol. I, Methuen and Co Ltd., London, 835 pp.Google Scholar
  9. Leavitt P. R., S. R. Carpenter, 1990. Aphotic pigment degradation in the hypolimnion: Implications for sedimentation studies and paleolimnology. Limnol. Oceanogr. 35:520–534.Google Scholar
  10. McKean C. J. P., R. N. Nordin. (unpublished manuscript). A simple continuous piston corer for organic sediments. Ministry of Environment, Victoria, B.C.Google Scholar
  11. Northcote T. G., K. J. Hall, 1983. Limnological contrasts and anomalies in two adjacent saline lakes. Hydrobiologia 105:179–194.Google Scholar
  12. Overmann J., J. T. Beatty, K. J. Hall, N. Pfennig, T. G. Northcote, 1991. Characterization of a dense, purple sulfur bacterial layer in a meromictic salt lake. Limnol. Oceanogr. 36:846–859.Google Scholar
  13. Overmann J., N. Pfennig, 1992. Buoyancy regulation and aggregate formation inAmoebobacter purpureus from Mahoney Lake. FEMS Microbiol. Ecol. 101:67–79.Google Scholar
  14. Pfennig N., H. G. Trüper, 1989. Anoxygenic phototrophic bacteria. In: Staley J. T., M. P. Bryant, N. Pfennig, J. G. Holt (eds): Bergey's manual of systematic bacteriology, Vol. III, Williams and Wilkins, Baltimore, pp. 1635–1709.Google Scholar
  15. Schmidt K., N. Pfennig, S. Liaaen Jensen, 1965. Carotenoids of Thiorhodaceae. IV. The carotenoid composition of 25 pure isolates. Arch. Mikrobiol. 52:132–146.PubMedGoogle Scholar
  16. Schmidt K., 1978. Biosynthesis of carotenoids. In: Clayton R. K., W. R. Sistrom (eds): The photosynthetic bacteria, Plenum Press, New York, pp. 729–750.Google Scholar
  17. Vallentyne J. R., 1956. Epiphasic carotenoids in post-glacial lake sediments. Limnol. Oceanogr. 1:252–263.Google Scholar
  18. van den Hoek C., 1978. Algen: Einführung in die Phycologie. Thieme, Stuttgart, 481 pp.Google Scholar
  19. Watts D. C., J. R. Maxwell, 1977. Carotenoid diagenesis in a marine sediment. Geochim. Cosmochim. Acta 41:493–497.Google Scholar
  20. Züllig H., 1984. Vorläufige Mitteilung über das Vorkommen des aus Purpurbakterien stammenden Pigmentes Okenon in Seesedimenten. Schweiz. Z. Hydrol. 46:297–300.Google Scholar
  21. Züllig H., 1985. Pigmente phototropher Bakterien in Seesedimenten und ihre Bedeutung für die Seenforschung. Schweiz. Z. Hydrol. 47:87–126.Google Scholar

Copyright information

© Birkhäuser Verlag 1993

Authors and Affiliations

  • Jörg Overmann
    • 1
  • Gerhard Sandmann
    • 1
  • Ken J. Hall
    • 2
  • Tom G. Northcote
    • 3
  1. 1.Fakultät für BiologieUniversität KonstanzKonstanzGermany
  2. 2.Westwater Research CenterUniversity of British ColumbiaVancouverCanada
  3. 3.Department of ZoologyUniversity of British ColumbiaVancouverCanada

Personalised recommendations