Skip to main content
Log in

Does chlorophyllidea reduce reliability of chlorophylla measurements in marine coastal sediments?

  • Published:
Aquatic Sciences Aims and scope Submit manuscript

Abstract

Pigment concentrations (chlorophylla, chlorophyllidea and pheopigmentsa) were measured by HPLC and spectrophotometry with acidification on 57 samples collected in different marine coastal sediments, containing autochthonous microphytes, and with various organic matter contents (plant detritus, biodeposits or hydrocarbons). Statistical analysis shows that the spectrophotometry with acidification, as compared to HPLC, gives reliable values for chlorophylla. Chlorophyllidea concentrations may be considered as negligible. Though spectrophotometric methods are sometimes questioned when applied to sediments they appear to give easy, quick and good estimates of Chla contents in benthic microphytes for hydrobiological studies in coastal areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barlow, R. G., Y. Collos, S. Y. Maestrini and S. Roy, 1990. Microphytobenthic pigments in a salt marsh pond determined by HPLC and spectrophotometry. Mar. microb. Food Webs 4:117–128.

    Google Scholar 

  • Barrett, J. and S. W. Jeffrey, 1971. A note on the occurrence of chlorophyllase in marine algae. J. exp. mar. Biol. Ecol. 7:255–262.

    Google Scholar 

  • Baudinet, D., E. Alliot, B. Berland, C. Grenz, M. R. Plante-Cuny, R. Plante, C. Salen-Picard, 1990. Incidence of mussel culture on biogeochemical fluxes at the sediment-water interface. Hydrobiologia 207:187–196.

    Google Scholar 

  • Bianchi, T. S., R. Dawson and P. Sawangwong, 1988. The effects of macrobenthic deposit-feeding on the degradation of chloropigments in sandy sediments. J. exp. mar. Biol. Ecol. 122:243–255.

    Google Scholar 

  • Blanchard, G., M. R. Plante-Cuny, A. Dinet, F. L. Samson, C. Gatje, I. Amadi, 1990. Comparison of techniques for the measurement of microphytobenthic chloropigments after cell isolation with Ludox H. S. Mar. microb. Food Webs 4:207–216.

    Google Scholar 

  • Brown, S. R., 1968. Absorption coefficients of chlorophyll derivatives. J. Fish. Res. Bd Canada 25:523–540.

    Google Scholar 

  • Brown, S. R., R. J. Daley and R. N. McNeely, 1977. Composition and stratigraphy of the fossil phorbin derivatives of Little Round Lake, Ontario. Limnol. Oceanogr. 22:336–348.

    Google Scholar 

  • Brown, L. M., B. T. Hargrave and M. D. MacKinnon, 1981. Analysis of chlorophylla in sediments by High Pressure Liquid Chromatography. Can. J. Fish. Aquat. Sci. 38:205–214.

    Google Scholar 

  • Daemen, E. A. M. J., 1986. Comparison of methods for the determination of chlorophyll in estuarine sediments. Neth. J. Sea Res. 20:21–28.

    Google Scholar 

  • Daley, R. J., 1973. Experimental characterization of lacustrine chlorophyll diagenesis. II. Bacterial, viral and herbivore grazing effects. Arch. Hydrobiol. 72:409–439.

    Google Scholar 

  • Daley, R. J. and S. R. Brown, 1973. Experimental characterization of lacustrine chlorophyll diagenesis. I. Physiological and environmental effects. Arch. Hydrobiol. 72:277–304.

    Google Scholar 

  • Daley, R. J., S. R. Brown and R. N. McNeely, 1977. Chromatographic and SCDP measurements of fossil phorbins and the postglacial history of Little Round Lake, Ontario. Limnol. Oceanogr. 22:349–360.

    Google Scholar 

  • Eaton, J. W. and B. Moss, 1966. The estimation of numbers and pigment content in epipelic algal populations. Limnol. Oceanogr. 11:584–595.

    Google Scholar 

  • Gieskes, W. W. C. and G. W. Kraay, 1980. Primary productivity and phytoplankton pigment measurements in the northern North Sea during FLEX. “76, Meteor” Forsch. Ergebnisse Reihe A 22:105–112.

    Google Scholar 

  • Gieskes, W. W. C. and G. W. Kraay, 1986. Analysis of phytoplankton pigments by HPLC before, during and after mass occurrence of the microflagellateCorymbellus aureus during the spring bloom in the open northern North Sea in 1983. Mar. Biol. 92:45–52.

    Google Scholar 

  • Hallegraeff, G. M. and S. W. Jeffrey, 1985. Description of new chlorophylla alteration products in marine phytoplankton. Deep Sea Res. 32:697–705.

    Google Scholar 

  • Hawkins, A. J. B., B. L. Bayne, R. F. C. Mantoura and C. A. Llewellyn, 1986. Chlorophyll degradation and absorption throughout the digestive system of the blue musselMytilus edulis L. J. Exp. Mar. Biol. Ecol. 96:213–223.

    Google Scholar 

  • Holt, A. S. and E. E. Jacobs, 1954. Spectroscopy of plant pigments. I. Ethyl chlorophyllides A and B and their pheophorbides. Am. J. Bot. 41:710–717.

    Google Scholar 

  • Hurley, J. P. and D. E. Armstrong, 1990. Fluxes and transformations of aquatic pigments in Lake Mendota, Wisconsin. Limnol. Oceanogr. 35:384–398.

    Google Scholar 

  • Jacobsen, T. R., 1978. A quantitative method for the separation of chlorophyllsa andb from phytoplankton pigments by High Pressure Liquid Chromatography. Mar. Sci. Comm. 4:33–47.

    Google Scholar 

  • Jeffrey, S. W., 1974. Profiles of phytosynthetic pigments in the ocean using thin layer chromatography. Mar. Biol. 26:101–110.

    Google Scholar 

  • King, L. L. and D. J. Repeta, 1991. Novel pyropheophorbide steryl esters in Black Sea sediments. Geochimica et Cosmochimica Acta 55:2067–2074.

    Google Scholar 

  • Klein, B., 1989. Determination of marine phytoplankton and microphytobenthos biomass and diversity by means of algal pigment analysis. Ph. D. Thesis, University of Groningen, Netherlands, 87 p.

    Google Scholar 

  • La Giraudière (de), I., P. Laborde and J. C. Romano, 1989. HPLC determination of chlorophylls and breakdown products in surface microlayers. Mar. Chem. 26:189–204.

    Google Scholar 

  • Leavitt, P. R. and S. R. Carpenter, 1990. Aphotic pigment degradation in the hypolimnion: implications for sedimentation studies and paleolimnology. Limnol. Oceanogr. 35:520–534.

    Google Scholar 

  • Lorenzen, C. J., 1967. Determination of chlorophyll and pheopigments: spectrophotometric equations. Limnol. Oceanogr. 12:343–346.

    Google Scholar 

  • Lorenzen, C. J. and N. J. Downs, 1986. The specific absorption coefficients of chlorophyllidea and pheophorbidea in 90% acetone, and comments on the fluorometric determination of chlorophyll and pheopigments. Limnol. Oceanogr. 31:449–452.

    Google Scholar 

  • Lorenzen, C. J. and S. W. Jeffrey, 1980. Determination of chlorophyll in seawater. Report of intercalibration tests. UNESCO technical papers in marine science 35:1–20.

    Google Scholar 

  • Mantoura, R. F. C. and C. A. Llewellyn, 1983. The rapid determination of algal chlorophyll and carotenoid pigments and their breakdown products in natural waters by reverse-phase high-performance liquid chromatography. Analytica chim. Acta 151:297–314.

    Google Scholar 

  • Marker, A. F. H., 1977. Snme problems arising from the estimation of chlorophylla and pheophytina in methanol. Limnol. Oceanogr. 22:578–579.

    Google Scholar 

  • Marker, A. F. H. and S. Jinks, 1982. The spectrophotometric analysis of chlorophylla and pheopigments in acetone, ethanol and methanol. In: Rai H. and A. F. H. Marker: The measurement of photosynthetic pigments in freshwaters and standardization of methods. Arch. Hydrobiol. Beih. Ergebn. Limnol. 16:3–17.

    Google Scholar 

  • Marker, A. F. H., E. A. Nuscl, H. Rai and B. Riemann, 1980. The measurement of photosynthetic pigments in freshwaters and standardization of methods: conclusions and recommendations. Arch. Hydrobiol. Beih. Ergebn. Limnol. 14:91–106.

    Google Scholar 

  • Murray, A. P., C. F. Gibbs, A. R. Longmore and D. J. Flett, 1986. Determination of chlorophyll in marine waters: intercomparison of a rapid HPLC method with full HPLC, spectrophotometric and fluorometric methods. Mar. Chem. 18:211–227.

    Google Scholar 

  • Neveux, J., D. Delmas, J. C. Romano, P. Algarra, L. Ignatiades, A. Herbland, P. Morand, A. Neori, D. Bonin, J. Barbe, A. Sukenik and T. Berman, 1990. Comparison of chlorophyll and phaeopigment determinations by spectrophotometric, fluorometric, spectrofluorometric and HPLC methods. Mar. microb. Food Webs 4:217–238.

    Google Scholar 

  • Otsuki, A. and N. Takamura, 1988. Comparison of chlorophylla concentrations measured by fluorometric HPLC and spectrophotometric methods in highly eutrophic shallow Lake Kasumigaura. Verh. Internat. Verein. Limnol. 23:944–951.

    Google Scholar 

  • Pamatmat, M. M., 1968. Ecology and metabolism of a benthic community on an intertidal sandflat. Int. Revue ges. Hydrobiol. 53:211–298.

    Google Scholar 

  • Plante, R., M. R. Plante-Cuny and J. P. Reys, 1986. Photosynthetic pigments of sandy sediments on the north Mediterranean coast: their spatial distribution and its effects on sampling strategies. Mar. Ecol. Prog. Ser. 34:133–141.

    Google Scholar 

  • Plante-Cuny, M. R., 1974. Evaluation par spectrophotométrie des teneurs en chlorophyllea fonctionnelle et en phéopigments des substrats meubles marins. ORSTOM Nosy-Bé, Doc. multigr. 45:1–76.

    Google Scholar 

  • Riaux-Gobin, C., C. A. Llewellyn and B. Klein, 1987. Microphytobenthos from two subtidal sediments from North Brittany. II. Variations of pigment compositions and concentrations determined by HPLC and conventional techniques. Mar. Ecol. Prog. Ser. 40:275–283.

    Google Scholar 

  • Ridout, P. S. and R. J. Morris, 1985. Short-term variations in the pigment composition of a spring phytoplankton bloom from an enclosed experimental system. Mar. Biol. 87:7–11.

    Google Scholar 

  • Riemann, B., 1978. Carotenoid interference in the spectrophotometric determination of chlorophyll degradation products from natural populations of phytoplankton. Limnol. Oceanogr. 23:1059–1066.

    Google Scholar 

  • Roy, S., 1988. Effects of changes in physiological condition on HPLC-defined chloropigment composition ofPhaeodactylum tricornutum (Bohlin) in batch and turbidostat cultures. J. exp. mar. Biol. Ecol. 118:137–149.

    Google Scholar 

  • Saijo, Y. and T. Kamiya, 1972. Occurrence of chlorophyllidea in the sea. In: A. Y. Takenouti (ed), Biological oceanography of the northern North Pacific Ocean, Tokyo, pp. 191–197.

  • Sartory, D. P., 1985. The determination of algal chlorophyllous pigments by high performance liquid chromatography and spect-ophotometry. Water Res. 19:605–610.

    Google Scholar 

  • Sawada, Y. and F. Uyeno, 1966. Studies on the acetone extracts from marine mud and faeces of pearl oyster (Pinctada martensi). I. On the absorption spectra of acetone extracts. Bull. natn. Pearl Res. Lab. 11:1298–1307.

    Google Scholar 

  • Steele, J. H. and I. E. Baird, 1968. Production ecology of a sandy beach. Limnol. Oceanogr. 13:14–25.

    Google Scholar 

  • Tett, P., 1982. The Loch Eil project: planktonic pigments in sediments from Loch Eil and the firth of Lorne. J. exp. mar. Biol. Ecol. 56:101–114.

    Google Scholar 

  • Tett, P., M. G. Kelly and G. M. Hornberger, 1977. Estimation of chlorophylla and pheophytina in methanol. Limnol. Oceanogr. 22:579–580.

    Google Scholar 

  • Wetzel, R. G., 1963. Primary productivity of periphyton. Nature 197:1026–1027.

    Google Scholar 

  • Wetzel, R. G. and Westlake, D. F., 1969. Periphyton. Pp. 33–40 in Vollenweider R. A., ed. A manual on methods measuring primary production in aquatic environments. I.B.P. Handbook, Blackwell, n°12: Oxford and Edinburgh.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Plante-Cuny, MR., Barranguet, C., Bonin, D. et al. Does chlorophyllidea reduce reliability of chlorophylla measurements in marine coastal sediments?. Aquatic Science 55, 19–30 (1993). https://doi.org/10.1007/BF00877256

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00877256

Key words

Navigation