Skip to main content
Log in

Abnormalities of autonomic nervous control in human hypertension

  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Summary

The pathophysiology of various stages of hypertension is different. In early hyperkinetic borderline hypertension, the sympathetic drive to the heart and blood vessels is increased while the parasympathetic cardiac inhibition is decreased. The elevated cardiac output, vascular resistance, and blood pressure at that stage can be fully normalized by autonomic blockade. As hypertension advances, a hyperkinetic circulation is less evident, since beta-adrenergic responsiveness and cardiac compliance tend to decrease. Simultaneously hypertrophy of the resistance vessels increases the baseline vascular resistance and the vessels' responsiveness to constrictive stimuli. Eventually a picture of a normal cardiac output/high vascular resistance typical for established essential hypertension emerges. As the blood vessels become hyperreactive, the same degree of vasoconstriction/blood pressure elevation can be achieved with less sympathetic tone. In that phase the sympathetic overactivity is less evident, as the brain resets itself to maintain the same blood pressure elevation with a small amount of sympathetic discharge. While sympathetic overactivity may be less evident in established hypertension, it remains an important pathophysiologic factor, not only for the maintenance of blood pressure, but also for a number of other abnormalities in hypertension. Hypertension is intimately associated with higher levels of pressure-unrelated risk for development of atherosclerosis: dyslipidemia, overweight, and hyperinsulinemia. Furthermore, a number of factors in hypertension favor a poorer outcome from coronary heart disease. These pressure-independent factors increase the risk of coronary thrombosis, arrhythmic deaths, and coronary spasms. Sympathetic overreactivity appears to be crucially implicated in the evolution of this added coronary risk in hypertension. Understanding the pathophysiology of coronary risk and its relationship to sympathetic overreactivity in hypertension is helpful in seeking further improvements in clinical practice. At present antihypertensive treatment is less efficacious in reducing coronary events in hypertension than would be expected. Judicious use of appropriate drugs promises to further improve the efficacy of antihypertensive treatment in those patients who, in addition to high blood pressure, also have other associated risk factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Geisbock W. Die bedeutung der blutdruckmessung fur die praxis.Dtsch Arch Klin Med 1905;83:363–374.

    Google Scholar 

  2. Ayman D. Personality type of patients with arteriolar essential hypertension.Am J Med Sci 1933;186:213–223.

    Google Scholar 

  3. McCubbin JW, Green JH, Page IH. Baroreceptor function in chronic renal hypertension.Circ Res 1956;4:205–210.

    Google Scholar 

  4. Cowley AW Jr, Liard JF, Guyton AC. Role of the baroreceptor reflex in daily control of arterial blood pressure and other variables in dogs.Circ Res 1973;32:564–576.

    Google Scholar 

  5. Nathan MA, Reis DJ. Chronic labile hypertension produced by lesions of the nucleus tractus solitarii in the cat.Circ Res 1977;40:72–81.

    Google Scholar 

  6. Rothlin E, Cerletti A, Emmenegger H. Experimental psycho-neurogenic hypertension and its treatment with hydrogenated ergot alkalosis (hydergine).Acta Med Scand 1956;154(Suppl 312):27–35.

    Google Scholar 

  7. Folkow B, Rubinstein EH. Cardiovascular effects of acute and chronic stimulation of the hypothalamic defense area in the rat.Acta Physiol Scand 1966;68:48–57.

    Google Scholar 

  8. Anderson D, Kearns W. Better W. Progressive hypertension in dogs by avoidance conditioning and saline infusion.Hypertension 1983;5:286–291.

    Google Scholar 

  9. Goldstein DS. Plasma norepinephrine in essential hypertension. A study of the studies.Hypertension 1981;3:48–52.

    Google Scholar 

  10. Goldstein DS. Plasma catecholamines and essential hypertension. An analytical review.Hypertension 1983;5:86–99.

    Google Scholar 

  11. Brody MJ, Johnson AK. Role of the anteroventral third ventricle region in fluid and electrolyte balance, arterial pressure regulation, and hypertension. In: Martini L, Ganong WF, eds.Frontiers in Neuroendocrinology, Vol. 6. New York: Raven Press, 1989:249–292.

    Google Scholar 

  12. Lundin S, Nordlander M. Hemodynamics in the spontaneously hypertensive rat. In Zanchetti A, Tarazi RC, eds.Handbook of Hypertension, Vol. 7: Pathophysiology of Hypertension — Cardiovascular Aspects. Amsterdam: Elsevier Science, 1986:179–198.

    Google Scholar 

  13. Lundin S, Ricksten S-E, Thoren P. Renal sympathetic activity in the spontaneous hypertensive rats and normotensive controls, as studied by three different methods.Acta Physiol Scand 1984;120:265.

    Google Scholar 

  14. Julius S, Conway J. Hemodynamic studies in patients with borderline blood pressure elevation.Circulation 1968;38:282–288.

    Google Scholar 

  15. Widimsky J, Fejfarova MH, Fejfar Z. Changes of cardiac output in hypertensive disease.Cardiologia 1957;31:381–389.

    Google Scholar 

  16. Eich RH, Peters RJ, Cuddy RP, Smulyan H, Lyons RH. The hemodynamics in labile hypertension.Am Heart J 1962;63:188–195.

    Google Scholar 

  17. Lund-Johansen P. Hemodynamic alterations in early essential hypertension: Recent advances. In: Gross F, Strasser T, eds.Mild Hypertension: Recent Advances. New York: Raven Press, 1983:237–249.

    Google Scholar 

  18. Frohlich ED, Kozul VJ, Tarazi RC, Dustan HP. Physiological comparison of labile and essential hypertension.Circ Res 1970;26(Suppl I):55–69.

    Google Scholar 

  19. Messerli FH, De Carvalho JGR, Christie B, Frohlich ED. Systemic and regional hemodynamics in low, normal and high cardiac output borderline hypertension.Circulation 1978;58:441–448.

    Google Scholar 

  20. Messerli FH, Frohlich ED, Suarez DH, Reisin E, Dreslinski GR, Dunn FG, Cole FE. Borderline hypertension: Relationship between age, hemodynamics and circulating catecholamines.Circulation 1981;64:760–764.

    Google Scholar 

  21. Julius S, Pascual AV, London R. Role of parasympathetic inhibition in the hyperkinetic type of borderline hypertension.Circulation 1971;44:413–418.

    Google Scholar 

  22. Julius S, Krause L, Schork N, et al. Hyperkinetic borderline hypertension in Tecumseh, Michigan.J Hypertens 1991;9:77–84.

    Google Scholar 

  23. Esler M, Julius S, Zweifler A, et al. Mild high-renin essential hypertension: Neurogenic human hypertension?N Engl J Med 1977;296:405–411.

    Google Scholar 

  24. Anderson EA, Sinkey CA, Lawton WJ, Mark AL. Elevated sympathetic nerve activity in borderline hypertensive humans: Evidence from direct intraneural recordings.Hypertension 1989;14:177–183.

    Google Scholar 

  25. Levy RL, Hillman CC, Stroud WD, White PD. Transient hypertension: Its significance in terms of later development of sustained hypertension and cardiovascular-renal diseases.JAMA 1944;126:829–833.

    Google Scholar 

  26. Paffenbarger RS Jr, Thorne MC, Wing AL. Chronic disease in former college students — VIII. Characteristics in youth predisposing to hypertension in later years.Am J Epidemiol 1968;88:25–32.

    Google Scholar 

  27. Stamler J, Berkson DM, Dyer A, et al. Relationship of multiple variables to blood pressure — Findings from four Chicago epidemiologic studies. In Paul O, ed.Epidemiology and Control of Hypertension. Miami, FL: Symposia Specialists, 1975:307–352.

    Google Scholar 

  28. Lund-Johansen P, Omvik P. Hemodynamic patterns of untreated hypertensive disease. In: Laragh JH, Brenner BM, eds.Hypertension: Pathophysiology, Diagnosis, and Management. New York: Raven Press, 1990:305–327.

    Google Scholar 

  29. Julius S, Randall OS, Esler MD, Kashima T, Ellis CN, Bennett J. Altered cardiac responsiveness and regulation in the normal cardiac output type of borderline hypertension.Circ Res 1975;36–37(Suppl I):I199-I207.

    Google Scholar 

  30. Folkow B. Physiological aspects of primary hypertension.Physiol Rev 1982;62:347–503.

    Google Scholar 

  31. Conway J. A vascular abnormality in hypertension. A study of blood flow in the forearm.Circulation 1963;27:520–529.

    Google Scholar 

  32. Sivertsson R, Sannerstedt R, Lundgren Y. Evidence for peripheral vascular involvement in mild elevation of blood pressure in man.Clin Sci Mol Med 1976;51:65s-68s.

    Google Scholar 

  33. Weidmann P, Grim M, Meier A, et al. Pathogenic and therapeutic significance of cardiovascular pressor reactivity as related to plasma catecholamines in borderline and established essential hypertension.Clin Exp Hypertens 1980;2:427–449.

    Google Scholar 

  34. Amann FW, Bolli P, Kiowski W, Buhler FR. Enhanced alpha-adrenoreceptor-mediated vasoconstriction in essential hypertension.Hypertension (1981);3(Suppl I):I119-I123.

    Google Scholar 

  35. Philipp TH, Distler A, Cordes U. Sympathetic nervous system and blood-pressure control in essential hypertension.Lancet 1978;2:959–963.

    Google Scholar 

  36. Esler M, Jackman G, Bobik A, et al. Norepinephrine kinetics in essential hypertension. Defective neuronal uptake of norepinephrine in some patients.Hypertension 1981;3:149–156.

    Google Scholar 

  37. Julius S. Editorial review: The blood pressure seeking properties of the central nervous system.J Hypertens 1988:6:177–185.

    Google Scholar 

  38. Guyton AC, Coleman TG. Quantitative analysis of the pathophysiology of hypertension.Circ Res 1969;24–25(Suppl I):1–19.

    Google Scholar 

  39. Baccelli G, Valentini R, Gregorini L, et al. Haemodynamic effects of isometric handgrip exercise in patients convalescent from myocardial infarction.Clin Exp Pharmacol Physiol 1978;5:607–615.

    Google Scholar 

  40. Julius S. Sanchez R, Malayan S, et al. Sustained blood pressure elevation to lower body compression in pigs and dogs.Hypertension 1982;4:782–788.

    Google Scholar 

  41. Julius S, Brandt D. Hemodynamic plasticity during hindquarter compression.Acta Physiol Scand 1988;133(Suppl 571):107–116.

    Google Scholar 

  42. Ulrych M. Changes of general haemodynamics during stressful mental arithmetic and nonstressing quiet conversation and modification of the latter by beta-adrenergic blockade.Clin Sci 1969;36:453–461.

    Google Scholar 

  43. MacDonald HR, Sapru RP, Taylor SH, Donald KW. Effect of intravenous propranolol on the systemic circulatory response to sustained handgrip.Am J Cardiol 1966;18:333–343.

    Google Scholar 

  44. Liard JF, Tarazi RC, Ferrario CM, Manger WM. Hemodynamic and humoral characteristics of hypertension induced by prolonged stellate ganglion stimulation in conscious dogs.Circ Res 1975;36:455–465.

    Google Scholar 

  45. Andren L, Hansson L. Eggertsen R, Hedner T, Karlbert BE. Circulatory effects of noise.Acta Med Scand 1983;213:31–35.

    Google Scholar 

  46. Julius S, Jamerson K, Mejia A, Krause L, Schork N, Jones K. The association of borderline hypertension with target organ changes and higher coronary risk. Tecumseh Blood Pressure Study.JAMA 1990;264:354–358.

    Google Scholar 

  47. Julius S. Mejia A, Jones K, et al. “White coat” versus “sustained” borderline hypertension in Tecumseh, Michigan.Hypertension 1990;16:617–623.

    Google Scholar 

  48. Pfeifle B, Ditschuneit H. Effect of insulin on the growth of cultured arterial smooth muscle cells.Diabetologia 1981;20:155–158.

    Google Scholar 

  49. Stout RW, Bierman EL, Ross R. Effect of insulin on the proliferation of cultured primate arterial smooth muscle cells.Circ Res 1975;36:319–327.

    Google Scholar 

  50. Pfeifle B, Ditschuneit HH, Ditschuneit H. Insulin as a cellular growth regulator of rat arterial smooth muscle cells in vitro.Horm Metab Res 1980;12:381–385.

    Google Scholar 

  51. Welborn TA, Wearne K. Coronary heart disease incidence and cardiovascular mortality in Busselton with reference to glucose and insulin concentrations.Diabetes Care 1979;2:154–160.

    Google Scholar 

  52. Ducimetiere P, Eschwege E, Papoz L., Richard JL, Claude JR, Rosselin G. Relationship of plasma insulin levels to the incidence of myocardial infarction and coronary heart disease mortality in a middle-aged population.Diabetologia 1980;19:205–210.

    Google Scholar 

  53. Pyorala K, Savolainen E, Kaukola S. Haapakoski J. Plasma insulin as a coronary heart disease risk factor: Relationship to other risk factors and predictive value during 9 1/2 year follow-up of the Helsinki Policemen Study population.Acta Med Scand Suppl 1985;701:38–52.

    Google Scholar 

  54. DeFronzo RA, Ferrannini E. Insulin resistance: A multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and atherosclerotic cardiovascular disease.Diabetes Care 1991;14:173–194.

    Google Scholar 

  55. DeFronzo RA, Gunnarsson R, Bjorkman O, Olsson M, Wahren J. Effects of insulin on peripheral and splanchnic glucose metabolism in noninsulin-dependent (type II) diabetes mellitus.J Clin Invest 1985;76:149–155.

    Google Scholar 

  56. Natali A, Santoro D, Palombo C, Cerri M, Ghione S, Ferrannini E. Impaired insulin action on skeletal muscle metabolism in essential hypertension.Hypertension 1991:17:170–178.

    Google Scholar 

  57. Deibert DC, DeFronzo RA. Epinephrine-induced insulin resistance in man.J. Clin Invest 1980;65:717–721.

    Google Scholar 

  58. Zeman RJ, Ludemann R, Easton TG, Etlinger JD. Slow to fast alterations in skeletal muscle fibers caused by clenbuterol, a beta-2-receptor agonist.Am J Physiol 1988;254:E726-E732.

    Google Scholar 

  59. Julius S. Gudbrandsson T. Jamerson K, Shahab ST, Andersson O. Hypothesis. The hemodynamic link between insulin resistance and hypertension.J Hypertens 1991;9:983–986.

    Google Scholar 

  60. Jamerson KA, Julius S, Gudbrandsson T, Andersson O, Brant DO. Reflex sympathetic activation induces acute insulin resistance in the human forearm.Hypertension 1993;21:886–893.

    Google Scholar 

  61. Sullivan JM, Prewitt RL, Josephs JA. Attenuation of the microcirculation in young patients with high-output borderline hypertension.Hypertension 1983;5:844–851.

    Google Scholar 

  62. Hartper RN, Moore MA, Marr MC, Watts LE, Hutchins PM. Arteriolar rarefaction in conjunctiva of human essential hypertensives.Microvasc Res 1978;16:369–372.

    Google Scholar 

  63. Short DS, Thomson AD. The arteries of the small intestine in systemic hypertension.J Pathol Bacteriol 1959;78:311–334.

    Google Scholar 

  64. Henrich HA, Romen W, Heimgartner W, Hartung E, Baumer F. Capillary rarefaction characteristic of the skeletal muscle of hypertensive patients.Klin Wochensch 1988;66:54–60.

    Google Scholar 

  65. Tibblin G, Bergentz S-E, Bjure J, Wilhelmsen L. Hematocrit, plasma protein, plasma volume, and viscosity in early hypertensive disease.Am Heart J 1966;72:165–176.

    Google Scholar 

  66. Sorlie PD, Garcia-Palmieri MR, Costas R Jr, Havlik RJ. Hematocrit and risk of coronary heart disease: The Puerto Rico Heart Health Program.Am Heart J 1981;101:456–461.

    Google Scholar 

  67. Salonen JT, Nyyssonen K, Korpela H, Tuomilehto J, Seppanen R, Salonen R. High stored iron levels are associated with excess risk of myocardial infarction in eastern Finnish men.Circulation 1992;86:803–811.

    Google Scholar 

  68. Julius S, Pascual A, Reilly K, London R. Abnormalities of plasma volume in borderline hypertension.Arch Intern Med 1971;127:116–119.

    Google Scholar 

  69. Cohn JN. Relationship of plasma volume changes to resistance and capacitance vessel effects of sympathomimetic amines and angiotensin in man.Clin Sci 1966;30267–278.

    Google Scholar 

  70. Julius S, Pascual AV, Abbrecht P, London R. Effect of beta-adrenergic blockade on plasma volume in human subjects.Proc Soc Exp Biol Med 1972;140:982–985.

    Google Scholar 

  71. Kjeldsen SE, Gjesdal K, Eide I, et al. Increased beta-thromboglobulin in essential hypertension: Interactions between arterial plasma adrenaline, platelet function and blood lipids.Acta Med Scand 1983;213:369–373.

    Google Scholar 

  72. Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham heart study.N Engl J Med 1990;322:1561–1566.

    Google Scholar 

  73. Korner PI, Shaw J, Uther JB, West MJ, McRitchie RJ, Richards JG. Autonomic and nonautonomic circulatory components in essential hypertension in man.Circulation 1973;48:107–117.

    Google Scholar 

  74. Schwartz PJ, Vanoli E, Stramba-Badiale M, Ferrari GM, Billman GE, Foreman RD. Autonomic mechanisms and sudden death — New insights from analysis of baroreceptor reflexes in conscious dogs with and without a myocardial infarction.Circulation 1993;78:969–979.

    Google Scholar 

  75. Billman GE. Effect of carbachol and cyclic GMP on susceptibility to ventricular fibrillation.FASEB 1990;4:1668–1673.

    Google Scholar 

  76. Simpson P. Norepinephrine-stimulated hypertrophy of cultured rat myocardial cells is an alpha-1 adrenergic response.J Clin Invest 1983;72:732–738.

    Google Scholar 

  77. Dzau VJ, Gibbons GH, Pratt RE. Molecular mechanisms of vascular renin-angiotensin system in myointimal hyperplasia.Hypertension 1991;18(Suppl):II100-II105.

    Google Scholar 

  78. Vogt M, Motz W, Schwartzkopff B, Strauer B. Coronary microangiopathy and cardiac hypertrophy.Eur Heart J 1990;11(Suppl B):133–138.

    Google Scholar 

  79. Egan B, Julius S. Vascular hypertrophy in borderline hypertension: Relationship to blood pressure and sympathetic drive.Clin Exp Hypertens [A] 1985(A7):243–255.

  80. MacMahon S, Peto R, Cutler J, et al. Blood pressure, stroke, and coronary heart disease. Part 1, prolonged differences in blood pressure: Prospective observational studies corrected for the regression dilution bias.Lancet 1990;335:765–774.

    Google Scholar 

  81. Collins R, Peto R, MacMahon S, et al. Blood pressure, stroke, and coronary heart disease. Part 2, short-term reduction in blood pressure: Overview of randomised drug trials in their epidemiological context.Lancet 1990;335:827–838.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Julius, S. Abnormalities of autonomic nervous control in human hypertension. Cardiovasc Drug Ther 8 (Suppl 1), 11–20 (1994). https://doi.org/10.1007/BF00877080

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00877080

Key words

Navigation