Skip to main content

Advertisement

Log in

The ecosystem of a mesotrophic lake-I. Simulating plankton biomass and the timing of phytoplankton blooms

  • Published:
Aquatic Sciences Aims and scope Submit manuscript

Abstract

The response of plankton biomass in Lake Mjøsa, Norway, to changes in exogeneous factors during the years 1976–87 is studied by using a simulation model of the lake ecosystem. The model includes mechanisms required to test the Sverdrup hypothesis for the initiation of the spring phytoplankton bloom, and it includes zooplankton grazing and thermocline erosion which is important factors contributing to the formation of a second autumn bloom. The model describes 45% of the observed inter annual variance in chl-a, but only the right order of magnitude for the zooplankton biomass. The model describes 35% of the variance in the timing of the onset of phytoplankton growth (p = 0.03) and 41% of the variance in the timing of the second bloom (p = 0.07). However, 4 of 12 simulated annual time series showed only one bloom. The OECD regression model for chl-a as a function of TP concentration and flushing rate explained 50% of the variance in chl-a, but a zooplankton regression model did not explain the observed variance in zooplankton biomass. A published regression model for the timing of the spring bloom gave a negative correlation with the observed bloom.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aruga, Y., 1965. Ecological studies of photosynthesis and mater production of phytoplankton II. Photosynthesis of algae in relation to light intensity and temperature. Bot. Mag. Tokyo 78:360–365.

    Google Scholar 

  • Banse, K., 1976. Rates of growth, respiration and photosynthesis of unicellular algae and ciliates, and the role of ciliates in the marine pelagial. Limnol. Oceanogr. 27(6):1059–1071.

    Google Scholar 

  • Beljanin, V. N., and A. P. Trenkensu, 1977. Growth and spectrophotometric characteristic of the blue-green algaeSynechococcus elonagatus under different temperature and light conditions. Arch. Hydrobiol./Suppl. 51:46–66.

    Google Scholar 

  • Bjørndalen, K., and Ø. Løvstad, 1984. Nutrient growth conditions forOscillatoria spp. and diatoms in two Norwegian lakes. Nord. J. Bot. 4:545–552.

    Google Scholar 

  • Borgman, U., R. Cove and C. Lovenridge, 1980. Effects of metals on the biomass production kinetics of freshwater copepods. Can. J. Fish. Aquat. Sci. 37:567–575.

    Google Scholar 

  • Burns, N. M., and F. Rosa, 1980. In situ measurement of the settling velocity of organic carbon particles and 10 species of phytoplankton. Limnol. Oceanogr. 25:855–864.

    Google Scholar 

  • Curds, C. R., 1971. A computer-simulation study of predator-prey relationships in single-stage continuous-culture system. Water Research 5:793–812.

    Google Scholar 

  • Davies, C. O., 1982. The importance of understanding phytoplankton life strategies in the design of enclosure experiments. In: G. D. Grice and M. R. Reeve, (eds.) Marine Mesocosms. Biological and chemical research in experimental ecosystems. Springer, Berlin: pp. 323–332.

    Google Scholar 

  • Dumont, H. J., I. Van de Velde and S. Dumont, 1975. The dry weight estimate of biomass in a selection of Cladocera, Copepoda and Rotifera from the plankton, periphyton and benthos of continental waters. Oecologia (Berl.): 75–97.

  • Eppley and Sloan, 1965. Carbon balance experiments with marine phytoplankton. J. Fish. Res. Bd. Canada 22:1083–1097.

    Google Scholar 

  • Falkowski, P. G., 1980. Light-shade adaption in marine phytoplankton. Brookhaven Symposia in Biology 31:99–119.

    Google Scholar 

  • Falkowski, P. G., and T. G. Owens, 1978. Effects and light intensity on photosynthesis and dark respiration in six species of marine phytoplankton. Marine Biology 45:289–295.

    Google Scholar 

  • Fallon, R. D., and R. D. Brock, 1980. Planktonic blue-green algae: Production, sedimentation and decomposition in Lake Mendota, Wisconsin. Limnol. Oceanogr. 25:72–88.

    Google Scholar 

  • Foy, R. H., C. E. Gibson and R. V. Smith, 1976. The influence of daylength, light intensity and temperature on the growth rates of planktonic blue-green algae. Br. Phycol. J. 11:151–163.

    Google Scholar 

  • Frost, B. W., 1972. A threshold feeding behavior inCalanus pacificus. Limnol. Oceanogr. 20:263–266.

    Google Scholar 

  • Gilbert, P. M., and J. G. Goldman, 1981. Rapid ammonium uptake by marine phytoplankton. Marine Biology Letters 2:25–31.

    Google Scholar 

  • Gotham, I. J., and G.-Y. Rhee, 1981a. Comparative kinetic studies of nitrate-limited growth and nitrate uptake in phytoplankton in continuous culture. J. Phycol. 17:309–314.

    Google Scholar 

  • Gotham, I. J., and G.-Y. Rhee, 1981b. Comparative kinetic studies of phosphate-limited growth and phosphate uptake in phytoplankton in continuous culture. J. Phycol. 17:257–265.

    Google Scholar 

  • Griece, G. D., R. P. Harris, M. R. Reeve, J. F. Heinbrokel and C. O. Davis, 1980. Large-scale enclosed water-column ecosystems. An overview of food web 1. The final CEPEX experiment. J. Mar. Biol. Ass. U.K. 60:401–414.

    Google Scholar 

  • Holm, N. P., and D. E. Armstrong, 1981. Role of nutrient limitation and competition in controlling the populations ofAsterionella formosa andMicrocysitis aeruginosa in semicontinuous cluture. Limnol. Oceanogr. 26:622–634.

    Google Scholar 

  • Holm, N. P., G. G. Ganf and J. Shapiro, 1983. Feeding and assimilation ofDaphia pulex fedAphanizomenon flos aquae. Limnol. Oceanogr. 28:677–687.

    Google Scholar 

  • Holtan, H., 1979. The Lake Mjøsa story. Arch. Hydrobiol. Beih. 13:242–258.

    Google Scholar 

  • Ikeda, T., and S. Motoda, 1978. Estimating zooplankton production and their amonia excretion in the Kuroshio and adjacent seas. Fish. bull. 76:357–367.

    Google Scholar 

  • Imboden, D. M., U. Lemmin, T. Joller and M. Schurter, 1983. Mixing processes in lakes: mechanisms and ecological relevance. Schweiz. Z. Hydrol. 45:11–44.

    Google Scholar 

  • Källqvist, T., 1982. The influence of light intensity and temperature on the growth rate of phytoplankton in laboratory cultures. Report 11/82. Norwegian Council for Research on Eutrophication: 46 pp.

  • Kiefer, D. A., and B. G. Mitchell, 1983. A simple, steady state description of phytoplankton growth based on absorption cross section and quantum efficiency. Limnol. Oceanogr. 28:770–776.

    Google Scholar 

  • Kjellberg, G., 1985. Monitoring of Lake Mjøsa. Abstract, trends and commentaries. 1976–1981. NIVA-rapport no. 54182. Part B: 50 p. (in Norwegian).

  • Krüger, G. H. I., and J. N. Eloff, 1977. The influence of light intensity on the growth of differentMicrocystis isolates. J. Limnol. Soc. Sth. Afr. 3:21–25.

    Google Scholar 

  • Kunikane, S., M. Kaneko and R. Maehara, 1981. Steady state analysis of algal cultures grown under simultaneous limitation of nitrogen and phosphorus. Verh. Internal. Verein. Limnol. 21:1454–1457.

    Google Scholar 

  • Lam, R. R., and B. W. Frost, 1976. Model of copepod filtering response to changes in size and concentration of food. Limnol. Oceanogr. 21:490–500.

    Google Scholar 

  • Lehman, J. T., 1980. Release and cycling of nutrients between planktonic algae and herbivores. Limnol. Oceanogr. 25:620–632.

    Google Scholar 

  • Lehman, J. T., and D. Scavia, 1982. Microscale pathciness of nutrients in plankton communities. Science 216:729–730.

    Google Scholar 

  • Lynch, M., 1983. Estimation of size-specific mortality rates in zooplankton populations by periodic sampling. Limnol. Oceanogr. 28:533–545.

    Google Scholar 

  • Løvstad, Ø., 1983. Determination of growth-limiting nutrients fed species ofOscillatoria and two “oligotrophic” diatoms. Hydrobiologia 107:221–230.

    Google Scholar 

  • Løvstad, Ø., and T. Wold, 1984. Determination of external concentrations of available phosphorus for phytoplankton populations in lakes. Verh. Int. Ver. Limnol. 22:205–210.

    Google Scholar 

  • Marshall, C. T., and R. H. Peters, 1989. General patterns in the seasonal development of chlorophylla for temperate lakes. Limnol Oceanogr. 34:856–867.

    Google Scholar 

  • Mazumder, A., W. D. Taylor, D. J. McQueen, D. R. S. Lean, 1989. Effects of fish and plankton on lake temperature and mixing depth. Science 247:312–315.

    Google Scholar 

  • McCauley, E., and J. Kalff, 1981. Empirical relationships between phytoplankton and zooplankton biomass in lakes. Can. J. Fish. Aquat. Sci. 38:458–463.

    Google Scholar 

  • McCauley, E., J. A. Downing and S. Watson, 1989. Sigmoid relationships between nutrients and chlorophyll among lakes. Can. J. Fish. Aquat. Sci. 46:1171–1175.

    Google Scholar 

  • McCarty, J. J., and J. C. Goldman, 1979. Nitrogeneous nutrition of marine phytoplankton and zooplankton in lakes. Can. J. Fish. Aquat. Sci. 38:458–463.

    Google Scholar 

  • McIsac, J. J., and R. C. Dugdale, 1969. The kinetics of nitrate and ammonia uptake by natural populations of marine phytoplankton. Deep-Sea Res. 16:45–57.

    Google Scholar 

  • Meijering, M. P. D., and H. U. Jacobi, 1981. Timing of cladocera in waters of Bear Island (74°30′ N, 19° E) and Spiekeroog (53°46′ N, 7°42′ E). Verh. Internat. Verein. Limnol. 21:1545–1549.

    Google Scholar 

  • Meyers, J., and W. A. Kratz, 1955. Relations between pigment content and photosynthetic characteristics in a blue-green algae. J. Gen. Physiol. 39:11–22.

    Google Scholar 

  • Mullin, M. M., E. F. Stuart and F. J. Fuglister, 1975. Ingestion by planktonic grazers as a function of concentration of food. Limnol. Oceanogr. 20:259–262.

    Google Scholar 

  • NVE, 1984. The 1. Otta Dam regulation. Norwegian Water- and Energy Administration (Figures only).

  • Okeda, M., and R. Sudo, 1980. Formation of water bloom of M. A.: A study for preventing it. Report of National Inst. of Environmental Science. 20 p.

  • Okino, T., 1973. Studies on the blooming ofMicrocystis aeruqinosa I. Characteristics of the water bloomMicrocystis. Jap. J. Bot. 20:381–402.

    Google Scholar 

  • Orcutt, J. D. Jr., and K. G. Porter, 1983. Diel vertical migration by zooplankton: constant and fluctuating temperature effects on life history parameters ofDaphnia. Limnol. Oceanogr. 28:720–730.

    Google Scholar 

  • OECD 1982. Eutrophication of waters. Monitoring, assessment and control. Paris Cedex 16, 155 p.

  • Parsons, T. R., M. Takahashi and B. Hargrave, 1984. Biological oceanographic processes. 3rd. ed. Pergamon Press. Oxford.

    Google Scholar 

  • Perry, R. I., P. C. F. Hurley, P. C. Smith, J. A. Koslow, R. O. Fournier, 1989. Modelling the initiation of spring phytoplankton blooms: a synthesis of physical and biological interannual variability off Southwest Nove Scotia, 1983–85. Can. J. Fish. Aq. Sci. (Suppl. 1):183–199.

    Google Scholar 

  • Peters, R., and D. Lean, 1973. The characterization of soluble phosphorus released by limnetic zooplankton. Limnol. Oceanogr. 18:270–279.

    Google Scholar 

  • Peters, R. H., and F. H. Rigler, 1973. Phosphorus release byDaphnia. Limnol. Oceanogr. 18:821–839.

    Google Scholar 

  • Prairie, Y. T., C. M. Duarte and J. Kalff, 1989. Unifying Nutrient-Chlorophyll relationships in lakes. Can. J. Fish. Aquat. Sci. 46:1176–1182.

    Google Scholar 

  • Prepas, E. E., and F. H. Rigler, 1980. A test of simple model to predict short term changes in the phosphorus concentration in lake water. Verh. Int. Ver. Limnol. 21:181–187.

    Google Scholar 

  • Reshkin, S. J., and C. A. Knaur, 1979. Light stimulation of phosphate uptake in natural assemblages of phytoplankton. Limnol. Oceanogr. 24:1121–1124.

    Google Scholar 

  • Reynolds, C. S., H. R. Morison and C. Butterwick, 1982. The sedimentary flux of phytoplankton in the south basin of Windermere. Limnol. Oceanogr. 27:1162–1175.

    Google Scholar 

  • Reynolds, C., 1984. The ecology of freshwater phytoplankton. Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • Rhee, G.-Y., and I. J. Gotham, 1981a. The effect of environmental factors on phytoplankton growth: Temperature and the interactions of temperature with nutrient limitation. Limnol. Oceanogr. 26:635–648.

    Google Scholar 

  • Rhee, G.-Y., and I. J. Gotham, 1981b. The effect of environmental factors on phytoplankton growth: Light and interaction of light with nitrate limitation. Limnol. Oceanogr. 26:649–659.

    Google Scholar 

  • Rognerud, S., and G. Kjellberg, 1984. Relationship between phytoplankton and zooplankton biomass in large lakes. Verh. Internat. Verein. Limnol. 22:666–671.

    Google Scholar 

  • Scavia, D., and J. R. Bennett, 1980. Spring transition period in Lake Ontario — A numerical study of the causes of the large biological and chemical gradients. Can. J. Fish. Aquat. Sci. 37:823–833.

    Google Scholar 

  • Scavia, D., and S. C. Chapra, 1977. Comparison of an ecological model of lake Ontario and phosphorus loading models. J. Fish. Res. Board. Can. 34:286–290.

    Google Scholar 

  • Scavia, D., and B. J. Eadie, 1976. The use of measurable coefficients in process formulations — zooplankton grazing. Ecol. Modelling 2:315–319.

    Google Scholar 

  • Seip, K. L., and T. Satoh, 1984. The impact of nutrient load on total biomass and species succession in Lake Suwa, Japan. Verh. Internat. Verein. Limnol. 22:1142–1149.

    Google Scholar 

  • Seip, K. L., 1990. Simulation models for lake management — How far do they go? Verh. Internat. Verein. Limnol. 26:604–608.

    Google Scholar 

  • Seip, K. L., 1991. The ecosystem of a mesotrophic lake II. Interactions among nutrient load, river flow, and epilimnion depth. Aquatic Sciences 53:263–272.

    Google Scholar 

  • Simons, T. J., and D. C. L. Lam, 1980. Some limitations of water quality models for large lakes: A case study of Lake Ontario. Water Resources Research 16:105–116.

    Google Scholar 

  • Small, L. F., S. W. Fowler and M. Y. Unlü, 1979. Sinking rates of natural copepod fecal pellets. Marine Biology 51:233–241.

    Google Scholar 

  • Smayda, T. J., 1971. Normal and accelerated sinking of phytoplankton in the sea. Marine Geology 11:105–122.

    Google Scholar 

  • Smayda, T. J., 1974. Some experiments on the sinking characteristics of two freshwater diatoms. Limnol. Oceanogr. 19:628–639.

    Google Scholar 

  • Smith, R. A., 1980. The theoretical basis for estimating phytoplankton production and specific growth rate from chlorophyll, light and temperature data. Ecol. Modeling 10:243–264.

    Google Scholar 

  • Smith, V. H., 1982. The nitrogen and phosphorus dependence of algal biomass in lakes: An empirical and theoretical analysis. Limnol. Oceanogr. 27:1101–1112.

    Google Scholar 

  • Smith, V. H., and J. Shapiro, 1981. Chlorophyll-phosphorus relations in individual lakes. Their importance to take restoration strategies. Environm. Sci. Technol. 15:444–451.

    Google Scholar 

  • Sommers, U., 1986. The periodicity of phytoplankton in Lake Constance (Bodensee) in comparison to other deep lakes in central Europe. Hydrobiologia 138:1–7.

    Google Scholar 

  • Sorokin, C., and R. W. Krauss, 1957. The effects of light intensity on the growth rates of green algae. Plant physiology 33:109–113.

    Google Scholar 

  • Steeman Nielsen, E., and E. G. Jørgensen, 1968. The adaptation of plankton algae. I General part. Physiologia Plantarium 21:404–413.

    Google Scholar 

  • Sterner, R. W., 1990. Lake morphometry and light in the surface layer. Can. J. Fish. Aq. Sci. 47:687–692.

    Google Scholar 

  • Strathman, R. R., 1967. Estimating the organic carbon content of phytoplankton from cell volume or plasma volume. Limnol. Oceanogr. 12:411–418.

    Google Scholar 

  • Sverdrup, H. U., 1953. On conditions for the vernal blooming of phytoplankton. J. Cons. Int. Explor. Mer. 18:287–295.

    Google Scholar 

  • Thendrup, A., 1978. Which changes in temperature and flow conditions of Lake Mjøsa can be anticipated as a consequence of the Jotunheimen river regulations? Vann 4:325–338 (in Norwegian).

    Google Scholar 

  • Therriault, J.-C., D. J. Lawrence and T. Platt, 1978. Spatial variability of phytoplankton turnover in relation to physical processes in a coastal environment. Limnol. Oceanogr. 23:900–911.

    Google Scholar 

  • Tilman, D., 1977. Resource competition between planktonic algae: An experimental and theoretical approach. Ecology 58:338–348.

    Google Scholar 

  • Tilman, D., S. S. Kilham and P. Kilham, 1982. Phytoplankton community ecology: The role of limiting nutrients. Ann. Rev. Ecol. Syst. 13:349–372.

    Google Scholar 

  • Tilzer, M. M., 1987. Light-dependence of photosynthesis and growth in cyanobacteria: implications for their dominance in eutrophic lakes. New Zealand Journal of Marine and Freshwater Research. 21:401–412.

    Google Scholar 

  • Titman, D., and P. Kilham, 1976. Sinking in freshwater phytoplankton: Some ecological implications of cell nutrient status and physical mixing processes. Limnol. Oceanogr. 21:409–417.

    Google Scholar 

  • Turpin, D. H., and P. J. Harrison, 1979. Limiting nutrient patchiness and its role in phytoplankton ecology. J. Exp. Mar. Biol. Ecol 39:151–166.

    Google Scholar 

  • Walters, C. J., D. C. E. Robinson and T. G. Northcote, 1990. Comparative population dynamics ofDaphnia rosea andHolopedium gibberum in four oligotrophic lakes. Can. J. Fish. Aquat. Sci. 47:402–409.

    Google Scholar 

  • Watanabe, M. F., 1979. Studies on the metalimnetic blue-green algaeOscillatora mouqeotii in a eutrophic lake with special reference to its population growth. Arch. Hydrobil. 86:66–86.

    Google Scholar 

  • Williams, P. J., Lee, B., 1982. Microbial contribution to overall plankton community respiration — Studies in enclosures. In: G. D. Grice and M. R. Reeve (eds.) Marine Mesocosms. Springer Verlag (Berlin): 305–321.

    Google Scholar 

  • Zevenboom, W., G. J. de Groot and L. R. Mur, 1980. Effects of light on nitrate-limitedOscillatora aqardhii in chemostat cultures. Arch. Microbiol. 125:59–65.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seip, K.L. The ecosystem of a mesotrophic lake-I. Simulating plankton biomass and the timing of phytoplankton blooms. Aquatic Science 53, 239–262 (1991). https://doi.org/10.1007/BF00877061

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00877061

Key words

Navigation