pure and applied geophysics

, Volume 120, Issue 2, pp 389–406 | Cite as

The lithosphere in the central-eastern Mediterranean area

  • G. Calcagnile
  • F. D'Ingeo
  • P. Farrugia
  • G. F. Panza


The lithosphere beneath the central-eastern Mediterranean area has been investigated by the inversion of the regional dispersion relations derived from analysis of surface waves. It is possible to distinguish several types of crust with average S-wave velocities in the range 3.0–3.8 km/sec, and thicknesses varying from a minimum of about 30 km, which corresponds to the Apennines, Crete and Otranto Channel regions, to a maximum of about 51 km beneath the Ionian Sea, which can be considered as a submerged continent. Associated with these crustal features, large lateral variations have been detected in the lithosphere thickness, which varies from a minimum of about 30 km corresponding to the Tyrrhenian Sea and south of Crete to a maximum of about 130 km corresponding to south-eastern Alps and north-central Greece, while the sub-Moho S-wave velocity varies in the range 4.2–4.8 km/sec. The constraint furnished by our results to the geological-tectonic setting of the investigated area, characterized by the continent continent collision between Africa and Europe, is pointed out.

Key words

Lithosphere Mediterranean Rayleigh waves 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aubouin, J. Alpine Tectonics and Plate Tectonics: Thoughts about the Eastern Mediterranean, inEurope from Crust to Core (ed. D. V. Ager and M. Brooks) (Wiley London 1976), pp. 143–158.Google Scholar
  2. Bellemo, S., Finetti, I., Morelli, C., Visintini, G., Mechler, P., andRoacard, Y. (1967),Recherches seismiques sur la croute terrestre selon un profil Peschici (Gargano)-Capo S. Maria di Leuca (Peninsule Salentine), Boll. Geof. Appl.9 (34), 108–119.Google Scholar
  3. Berry, M. J., andKnopoff, L. (1967),The Structure of the Upper Mantle under the Western Mediterranean Basin, J. Geophys. Res.72, 3613–3627.Google Scholar
  4. Biswas, N. N., andKnopoff, L. (1974),The Structure of the Upper Mantle under the United States from the Dispersion of Rayleigh Waves) Geophys. J. R. astr. Soc.36, 515–539.Google Scholar
  5. Calcagnile, G., andPanza, G. F. (1979),Crustal and Upper Mantle Structure Beneath the Apennines Region as Inferred from the Study of Rayleigh Waves, J. Geophys.45, 319–327.Google Scholar
  6. Calcagnile, G., andPanza, G. F. (1981),The Main Characteristics of the Lithosphere—Asthenosphere System in Italy and Surrounding Regions, Pure Appl. Geophys.119, 865–879.Google Scholar
  7. Caputo, M., Panza, G. F., andPostpischl, D. (1970),Deep Structure of the Mediterranean Basin J. Geophys. Res.75, 4919–4923.Google Scholar
  8. Cassinis, R., Franciosi, R., andScarascia, S. (1979),The Structure of the Earth's Crust in Italy. A Preliminary Typology based on Seismic Data, Boll. Geof. Teor. Appl.21, 105–126.Google Scholar
  9. Channel, J. E. T., D'Argenio, B., andHorvath, F. (1979),Adria, the African Promontory, in Mesozoic Mediterranean Palaeogeography, Earth-Sci. Rev.15, 213–292.Google Scholar
  10. Cloetingh, S., Nolet, G. andWortel, R. (1979),On the Use of Rayleigh Wave Group Velocities for the Analysis of Continental Margins, Tectonophysics,59, 335–346.Google Scholar
  11. Cloetingh, S., Nolet, G., andWortel, R. (1980),Crustal Structure of the Eastern Mediterranean Inferred from Rayleigh Wave Dispersion, Earth and Planetary Science Letters51, 336–342.Google Scholar
  12. D'Ingeo, F., Calcagnile, G., andPanza, G. F. (1980),On the Fault-Plane Solutions in the Central-Eastern Mediterranean Region, Boll. Geof. Teor. Appl.21, 13–22.Google Scholar
  13. Dragasevic, T. (1976),Results of Geophysical Exploration and Tectonic Structure of the South-Eastern Part of the Adriatic Sea, Vesnik Geofiz. 16–17, 37–59.Google Scholar
  14. Farrugia, P., andPanza, G. F.,Continental Character of the Lithosphere Beneath the Ionian Sea, inThe Solution of Inverse Problem in Geophysical Interpretation (ed. R. Cassinis) (Plenum Press, New York 1981) pp. 327–334.Google Scholar
  15. Finetti, I. (1976),Mediterranean Ridge: A Young Submerged Chain Associated With the Hellenic Arc, Boll. Geof. Teor. Appl.19, 31–65.Google Scholar
  16. Finetti, I., andMorelli, C. (1972),Wide Scale Digital Seismic Exploration of the Mediterranean Sea, Boll. Geof. Teor. Appl.14, 291–342.Google Scholar
  17. Finetti, I., andMorelli, C. (1973),Geophysical Exploration of the Mediterranean Sea, Boll. Geof. Teor. Appl.15, 263–340.Google Scholar
  18. Giese, P., andMorelli, C. (1973),Structural Map of the Moho, inStructural Model of Italy, Sheet South 2, UNR Rome.Google Scholar
  19. Giese, P., andMorelli, C. (1975),Crustal Structure in Italy. Quaderni di ‘La Ricerca Scientifica’, CNR-Roma,90, 453–489.Google Scholar
  20. Hinz, K. (1974),Results of Seismic Refraction and Seismic Reflection Measurements in the Ionian Sea, Geol. Jb.2, 35–65.Google Scholar
  21. Keilis-Borok, V. I. (1971),The Inverse Problem of Seismology, Proc. Int. School of Physics ‘E. Fermi’, course 50 (ed. J. Coulomb and M. Caputo), pp. 242–274.Google Scholar
  22. Le Pichon, X., andAngelier, J. (1979),The Hellenic Arc and Trench System: A Key to the Neotectonic Evolution of the Eastern Mediterranean Area, Tectonophysics60, 1–42.Google Scholar
  23. Levshin, A., Pisarenko, V., andPogrebinsky, G. (1972),On a Frequency Time Annalysis of Oscillations, Ann. Geophys.28, 211–218.Google Scholar
  24. Makris, J. (1973),Some Geophysical Aspects of the Evolution of the Ellenides, Bull. Geol. Soc. Greece10, 206–213.Google Scholar
  25. Makris, J. (1978),The Crust and Upper Mantle of the Aegean Region from Deep Seismic Soundings, Tectonophysics46, 269–284.Google Scholar
  26. Makris, J., andVees, R. (1977),Crustal Structure of the Central Aegean Sea and the Island of Evia, Crete and Greece, Obtained by Refractional Seismic Experiments, J. Geophys.42, 329–341.Google Scholar
  27. McKenzie, D. (1978),Active Tectonics of the Alpine-Himalyan Belt: The Aegean Sea and Surrounding Regions, Geophys. J. R. astr. Soc.55, 217–254.Google Scholar
  28. Morelli, C., Giese, P., Cassinis, R., Colombi, B., Guerra, I., Luongo, G., Scarascia, S., andSchütte, K. G. (1975),Crustal Structure of Southern Italy. A Seismic Refraction Profile Between Puglia-Calabria-Sicily. Boll. Geof. Appl.17, 183–210.Google Scholar
  29. Mueller, S.,A New Model of the Continental Crust, inThe Earth's Crust (ed. J. G. Heacock) (Geophys. Monogr. Series, 20, A. G. U. Washington D.C. 1977), pp. 289–317.Google Scholar
  30. Mulder, C. J. (1973),Tectonic Framework and Distribution of Miocene Evaporites in the Mediterranean, Koninklijke Nederlands Akademie van Wetenschappen, Amsterdam; from Messinian events in the Mediterranean, pp. 44–59.Google Scholar
  31. NASA (1977),Global Detailed Gravimetric Geoid Based Upon a Combination of the GSFC GEM-10 Earth Model and 1°×1° Surface Gravity Data, NASA-Goddard Space Flight Center, Greenbelt, MD, 20771, USA.Google Scholar
  32. Nicolich, R., andPellis, G. (1979),Il contributo dei dati geofisici per lo studio delle structure crostali della provincia geotermica Tosco-laziale, Istituto di Geofisica Applicata e Miniere, Università di Trieste; contr. n. 28.Google Scholar
  33. Nolet, G., Panza, G. F., andWortel, R. (1978),An Averaged Model for the Adriatic Subplate, Pure Appl. Geophys.116, 1284–1298.Google Scholar
  34. Panza, G. F.,The Resolving Power of Seismic Surface Waves with Respect to Crust and Upper Mantle Structure, inThe Solution of Inverse Problem in Geophysical Interpretation (ed. R. Cassinis) (Plenum Press, New York, 1981), pp. 39–77.Google Scholar
  35. Panza, G. F., andCalcanile, G. (1979),The Upper Mantle Structure in Balearic and Tyrrhenian Bathyal Plains and the Messinian Salinity Crisis, Paleogeogr., Paleoclimatol., Paleocol.,29, 3–14.Google Scholar
  36. Panza, G. F., Mueller, St., andCalcagnile, G. (1980),The Gross Features of the Lithosphere-Asthenosphere System in Europe From Seismic Surface Waves and Body Waves, Pure Appl. Geophys.118, 1209–1213.Google Scholar
  37. Panza, G. F., Schwab, F., andKnopoff, L. (1973),Multimode Surface Waves for Selected Focal Mechanisms. I. Dip-slip Sources on a Vertical Fault Plane, Geophys. J. R. astr. Soc.34, 265–298.Google Scholar
  38. Papazachos, B. C. (1969),Phase Velocities of Rayleight Waves in South-Eastern Europe and Eastern Mediterranean Sea, Pure Appl. Geophys.75, 47–55.Google Scholar
  39. Papazachos, B. C. (1973),Distribution of Seismic Foci in the Mediterranean and Surrounding Area and its Tectonic Implication, Geophys. J. R. astr. Soc.33, 421–430.Google Scholar
  40. Papazachos, B. C., andComninakis, P. E. (1978),Deep Structure and Tectonics of the Eastern Mediterranean, Tectonophysics46, 285–296.Google Scholar
  41. Payo, G. (1976),Crustal Structure of the Mediterranean Sea by Surface Waves, Part I, Group Velocity, Bull. Seism. Soc. Am.57, 151–172.Google Scholar
  42. Payo, G. (1969),Crustal Structure of the Mediterranean Sea, Part II, Phase Velocity and Travel Times, Bull. Seism. Soc. Am.59, 23–42.Google Scholar
  43. Prodehl, C.,The Structure of the Crust-Mantle Boundary Beneath North America and Europe as Derived from Explosion Seismology, inThe Earth's Crust (ed. J. G. Heacock), (Geophys. Monogr. Series, 20, A. G. U., Washington D.C. 1977), pp. 349–369.Google Scholar
  44. Rabinowitz, P. D., andRyan, W. B. F. (1970),Gravity Anomalies and Crustal Shortening in the Eastern Mediterranean, Tectonophysics10, 585–608.Google Scholar
  45. Schütte, K. G. (1974),Comparison of Observed and Theoretical Travel Time Curves for a Crustal Model of Central Calabria, E.S.C. 14th Gen.AAss. Trieste 1974. Natl. Geod. Geophys. Akad. Wiss. DDR, pp. 267–273.Google Scholar
  46. Snoeck, M. (1975),Der Krustenaufbau und die Tiefenstruktur zwischen den Liparischen Inseln in der Tyrrhenis und der Albanischen Küste in der Strasse von Otranto. Thesis, Hamburger Geophysikalische Einzelschriften, Hamburg.Google Scholar

Copyright information

© Birkhäuser Verlag 1982

Authors and Affiliations

  • G. Calcagnile
    • 1
  • F. D'Ingeo
    • 2
  • P. Farrugia
    • 1
  • G. F. Panza
    • 2
  1. 1.Istituto di Geodesia e Geofisica, UniversitàBariItaly
  2. 2.Istituto di Geodesia e Geofisica, UniversitàTriesteItaly

Personalised recommendations