pure and applied geophysics

, Volume 120, Issue 2, pp 348–364 | Cite as

On the resolving power of the VLF method

  • Václav Bezvoda
  • Karel Segeth


In the paper, the mathematical tools, used for the modelling of the electromagnetic field of the harmonic plane wave in the two-dimensional inhomogeneous medium (the case ofE-polarization), are presented. Further, the resolving power of some parameters, that are measured in the VLF and VLF-R methods, is compared in the case of two vertical conductive dykes. To this aim, all the usual parameters of the VLF method and the most important parameter of the VLF-R method (ρα) have been chosen. Two groups of models that differ in resistivities have been considered. In each of the groups the distance of the dykes is variable. The parameters |Hy|, which has shown most promising in this respect, is examined also from the point of view of the sensibility to geological noise. The results of the modelling are illustrated by two examples of the results of field measurements.

Key words

Numerical modelling VLF and VLF-R methods Harmonic electromagnetic field 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bláha, V., andChyba, J. (1979),Poznámky k problematice metody VDV, Hornická Příbram ve vêdê a technice, section Užitá geofyzika, 149–186.Google Scholar
  2. Coggon, J. H. (1971),Electromagnetic and Electrical Modeling by the Finite Element Method, Geophysics36, 132–155.Google Scholar
  3. Dey, A., andMorrison, H. F. (1979),Resistivity Modeling for Arbitrarily Shaped Three-Dimensional Structures, Geophysics44, 753–780.Google Scholar
  4. Hohmann, G. W. (1975),Three-Dimensional IP and Electromagnetic Modeling, Geophysics40, 309–324.Google Scholar
  5. Kaikkonen, P. (1979),Numerical VLF Modeling, Geophys. Prospect.27 815–834.Google Scholar
  6. Kaikkonen, P. (1980a),Numerical VLF, VLF-R and AMT Profiles over Some Complicated Models, Acta Univ. Oul. A 91, Phys. 16, 34 pp.Google Scholar
  7. Kaikkonen, P. (1980b),Interpretation Nomograms for VLF Measurements, Acta Univ. Oul. A 92, Phys. 17, 48 pp.Google Scholar
  8. Krs, M. (1972),Specific Problems of Ore Prospection Geophysics in Regions of Arid Climate, Rev. pure appl. Geophys.98, 163–172.Google Scholar
  9. Parasnis, D. S. (1974),Some Present-Day Problems and Possibilities in Mining Geophysics, Geoexploration12, 97–120.Google Scholar
  10. Praus, O. (1976),Numerical Solutions of the MT Field in Inhomogeneous Structures, Geoelectric and Geothermal Studies. KAPG Geophysical Monographs, Budapest, 231–244.Google Scholar
  11. Silvester, P., andHaslam, C. R. S. (1972),Magnetotelluric Modelling by the Finite Element Method, Geophys. Prospect.20, 872–891.Google Scholar
  12. Smith, B. D., andWard, S. H. (1974),On the Computation of Polarization Ellipse Parameters, Geophysics39, 867–869.Google Scholar
  13. Svetov, B. S. (1961),O sposobah interpretacii anomaliî induktivnogo metoda razvedki, Geofiziĉeskaja razvedka, Gostoptehizdat, Moskva, 86–96.Google Scholar
  14. Swift, C. M. (1971),Theoretical Magnetotelluric and Turam Response from Two-Dimensional Inhomogeneities, Geophysics36, 38–52.Google Scholar
  15. Zaborovskiî, A. I. (1960),Peremennye elektromagnitnye polja v elektrorazvedke, Izdatel'stvo moskovskogo universita, Moskva, 1–48.Google Scholar

Copyright information

© Birkhäuser Verlag 1982

Authors and Affiliations

  • Václav Bezvoda
    • 1
  • Karel Segeth
    • 2
  1. 1.Faculty of SciencesCharles UniversityPraha 2Czechoslovakia
  2. 2.Mathematical InstituteCzechoslovak Academy of SciencesPraha 1Czechoslovakia

Personalised recommendations