Advertisement

pure and applied geophysics

, Volume 120, Issue 2, pp 286–325 | Cite as

The removal of particulate matter from the atmosphere: the physical mechanisms

  • Franco Prodi
  • Francesco Tampieri
Article

Abstract

The removal of particulate matter from the atmosphere has been examined in the light of the physical mechanisms involved, with a review of the theoretical and experimental results available in the literature.

While the wet and dry removal are usually separately discussed, it has been decided to give evidence of the fundamental mechanisms which are active in both processes. A number of them, such as the inertial impaction, the phoretic and electrostatic collection, can be expressed through the equation of motion of the individual particle. Other mechanisms, such as Brownian and turbulent deposition, and incorporation by nucleation, require a description in terms of the behaviour of a population of particles.

Finally, the problem of the superposition of the different mechanisms in the actual removal processes has been faced.

The available experimental results have been consistently presented and compared when possible, in the same sequence, for each physical mechanism discussed in the presentation.

Key words

Scavenging of aerosol particles Wet removal of aerosol particles Aerosol particles scavenging of by drops and ice crystals 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adam, J. R., andSemonin, R. G. (1970),Collection Efficiencies of Raindrops for Submicron Particulates. Proc. Precipitation Scavenging Symposium, R. J. Engelmann and W. G. M. Slinn coords., U.S. Atomic Energy Commission, NTIS CONF 700601, pp. 151–160.Google Scholar
  2. Batchelor, G. K. (1976),Developments in Microhydrodynamics. General Lecture to International Congress of T.A.M., Delft, 1976.Google Scholar
  3. Beard, K. V., andPruppacher, H. R. (1971),A Wind Tunnel Investigation of the Rate of Evaporation of Small Water Drops Falling at Terminal Velocity in Air, J. Atmos. Sci.28, 1455–1464.Google Scholar
  4. Brock, J. R. (1962), J. Colloid. Sci.17, 768.Google Scholar
  5. Brock, J. R. (1963), J. Colloid. Sci.18, 489.Google Scholar
  6. Chamberlain, A. C. (1967), Transport of lycopodium spores and other small particles to rough surfaces.Proc. R. Soc. London, A296, 45–70.Google Scholar
  7. Corino, E. R., andBrodkey, R. S. (1969),A Visual Investigation of the Wall Region in Turbulent Flow, J. Fluid Mech.37, 1–30.Google Scholar
  8. Davies, C. N. andPeetz, C. V. (1956), Impingment of particles on a transverse cylinder.Proc. R. Soc. London A234, 269.Google Scholar
  9. Davis, M. H. (1964),Two Charged Spherical Conductors in a Uniform Electric Field: Forces and Field Strength., Q. J. Mech. Appl. Math.17, 499–511.Google Scholar
  10. Deryagin andBakanov (1962), Dokl. Akad. Nauk. SSSR,147, 139.Google Scholar
  11. Einstein, A.,On the Movement of Small Particles Suspended in a Stationary Liquid Demanded by the Molecules-Kinetic Theory of Heat., inInvestigation on the Theory of the Brownian Movement (ed. Fürth) (Dover Publiscations 1905), 119 pp. (pages 1–18).Google Scholar
  12. Engelmann, R. J. (1965),Rain Scavenging of Zinc Sulfide Particles, J. Atmos. Sci.22, 719–727.Google Scholar
  13. Fuchs, N. A.,The Mechanics of Aerosols (Pergamon Press, Oxford 1967), 408 pp.Google Scholar
  14. Grass, A. J. (1971),Structural Features of Turbulent Flow Over Smooth and Rough Boundaries, J. Fluid Mech.50, 233–255.Google Scholar
  15. Gregory, P. M. (1951), Ann. Appl. Biol.38, 357.Google Scholar
  16. Hall, W. D., andPruppacher, H. R. (1976),The Survival of Ice Particles Falling from Cirrus Clouds in Subsaturated Air, J. Atmos. Sci.33, 1995–2006.Google Scholar
  17. Herne, H.,The Classical Computations of the Aerodynamic Capture of Particles by Sphere inAerodynamic Capture of Particles (ed. E. C. Richardson) (Pergamon Press, Oxford 1960), pp. 26–34.Google Scholar
  18. Hidy, G. M., andBrock, J. R.,The Dynamics of Aerocolloidal Systems chap. 3, vol. 1 (Pergamon Press, Oxford 1970), 378 pp.Google Scholar
  19. Hinze, J. O.,Turbulence (McGraw-Hill Book Co., New York 1959), 586 pp.Google Scholar
  20. Hobbs, P. V., Radke, L. F., andHindman, E. E. (1976),An Integrated Airborne Particle-measuring Facility and its Preliminary Use in Atmospheric Aerosol Studies, J. Aerosol Sci.7, 195–211.Google Scholar
  21. Junge, C. (1958),Atmospheric Chemistry, Adv. Geophys.4, 1–108.Google Scholar
  22. Junge, C. E. andMcLaren, E. (1971),J. Atmos. Sc., 28, 382.Google Scholar
  23. Kerker, M., andHampl, V. (1974),Scavenging of Aerosol Particles by a Falling Water Drop and Calculations of Washout Coefficients. J. Atmos. Sci.31, 1368–1376.Google Scholar
  24. Kline, S. J., Reynolds, W. C., Schraub, F. A., andRunstadler, P. W. (1967),The Structure of Turbulent Boundary Layers, J. Fluid Mech.30, 741–773.Google Scholar
  25. Knutson, E. O., Sood, S. K., andStockman, J. D. (1976),Aerosol Collection by Snow and Ice Crystals, Atmos. Environm.10, 395–402.Google Scholar
  26. Langmuir, I.,Mathematical Investigation of Water Droplet Trajectories. General Electric Res. Lab. RL-224 and RL-225, Schenectady. InThe Collected Works of Irving Langmuir, (ed. C. G. Suits), vol. 10 (Atmospheric Phenomena) (Pergamon Press, Oxford 1945), pp. 335–393.Google Scholar
  27. List, R., andSchemenauer, R. S. (1971),Free-Fall Behavior of Planar Snow Crystals, Conical Graupel and Small Hail, J. Atmos. Sci.28, 110–115.Google Scholar
  28. Magono, C., Endoh, T., Harimaya, T., andKubota, S. (1974),A Measurement of Scavenging Effect of Falling Snow Crystals on the Aerosol Concentration, J. Met. Soc. Japan52, 407–416.Google Scholar
  29. Martin, J. J., Wang, P. K., andPruppacher, H. R. (1980),A Theoretical Determination of the Efficiency with which Aerosol Particles are Collected by Simple Ice, Crystal Plates, J. Atmos. Sci.37, 1628–1638.Google Scholar
  30. Mercer, T. T.,Aerosol Technology in Hazard Evaluation (Academic Press, New York 1973), 394 pp.Google Scholar
  31. Pasternak, I. S., andGauvin, W. H. (1960),Turbulent Heat and Mass Transfer from Stationary Particles, Can. J. Chem. Eng.38, 35–2.Google Scholar
  32. Pedori, F., Prodi, F. andWirth, E. (1973), Capture of droplets by simulated hexagonal plates: preliminary results,Riv. It. Geof., 22, 160–164.Google Scholar
  33. Pitter, R. L. (1977),A Reexamination of Riming on Thin Ice plates, J. Atmos. Sci.34, 684–685.Google Scholar
  34. Pitter, R. L., andPruppacher, H. R. (1974),A Numerical Investigation of Collision Efficiencies of Simple Ice Plates Colliding with Supercooled Water Drops. J. Atmos. Sci.31, 551–559.Google Scholar
  35. Pitter, R. L., Pruppacher, H. R., andHamielec, A. E. (1974),A Numerical Study of the Effect of Forced Convection on Mass Transport from a Thin Oblate Spheroid of Ice in Air, J. Atmos. Sci.31, 1058–1066.Google Scholar
  36. Prodi, F. (1976),Scavenging of Aerosol Particles by Growing Ice Crystals. Prepr. International Conference in Cloud Physics, Boulder, Colorado, Am Met. Soc. 70–75.Google Scholar
  37. Prodi, F. (1977),Scavenging of Submicron Particles in Mixed Clouds: a Laboratory Experiment. 9th Int. Conf. on Atm. Aerosols, Galway, Ireland, 1977.Google Scholar
  38. Prodi, F., Caporaloni, M., Santachiara, G., andTampieri, F. (1981),Inertial Capture of Particles by Obstacles in Form of Disks and Stellar Crystals, Q. J. R. Met. Soc.107, 699–710.Google Scholar
  39. Prodi, F., Santachiara, G., andProdi, V. (1979),Measurements of Thermophoretic Velocities of Aerosol Particles in the Transition Region, J. Aerosol Sci.10, 421–452.Google Scholar
  40. Pruppacher, H. R., andKlett, J. D.,Microphysics of Cloud and Precipitation (Reidel Publ. Co., Dordrecht 1978), 714 pp.Google Scholar
  41. Ranz, W. E., andWong, J. B. (1952),Impaction of Dust and Smoke Particles, Ind. Eng. Chem.44, 1371–1381.Google Scholar
  42. Sasyo, Y. (1971), Study of the formation of precipitation by the aggregation of snow particles and the accretion of cloud droplets on snowflakes. Papers in Meteorology and Geophysic (Publ. by the Met. Res. Inst. Tokyo, Japan),22, 69–142.Google Scholar
  43. Schlamp, R. J., Grover, S. N., Pruppacher, H. R., andHamielec, A. E. (1976),A Numerical Investigation of the Effect of Electric Charge and Vertical External Electric Fields on the Collision Efficiency of Cloud Drops. J. Atmos. Sci.33, 1747–1755.Google Scholar
  44. Schmitt, K. H. (1959), Z. Naturf.14A, 870.Google Scholar
  45. Slinn, W. G. N., andHales, J. M. (1971),A Re-evaluation of the Role of Thermophoresis as a Mechanism of in and Below-cloud Scavenging, J. Atmos. Sci.28, 1465–1471.Google Scholar
  46. Soo, S. L.,Fluid Dynamics of Multiphase Systems (Blaisdell Publ. Co., Waltham, Mass. 1967), 524 pp.Google Scholar
  47. Starr, J. R., andMason, B. J. (1966),The Capture of Airborne Particles by Water Drops and Simulated Snow Crystals, Q. J. R. Met. Soc.92, 480–499.Google Scholar
  48. Stavitskaya, A. V. (1972),Capture of Water-Aerosol Drops by Flat Obstacles in the Form of Star-Shaped Crystal, Izv. Atmos. Ocean Phys.8, 768–772.Google Scholar
  49. Stöber, W.,Dynamic Shape Factors of Nonspherical Aerosol Particles, inAssessment of Airborne Particles (eds. T. T. Mercer, P. E. Morrow, and W. Stöber) (C. C. Thomas, Springfield,Ill. 1972), 249–289.Google Scholar
  50. Styro, B., andTarasiuk, N.,The Influence of Thermophoretic Phenomena on the Aerosol Deposition on the Freely Falling Drop, inPhysical Aspects of Atmospheric Pollution (ed. Prof. B. Styro) (Mokslas, Vilnius 1976), pp. 56–61.Google Scholar
  51. Twoomey, S.,Atmospheric Aerosols (Elsevier Scientific Publ. Co., Amsterdam 1977), 302 pp.Google Scholar
  52. Waldmann, L. (1959), Z. Naturf.14A, 589.Google Scholar
  53. Waldmann, L., andSchmitt, K. H.,Thermophoresis and Diffusiophoresis of Aerosols, inAerosol Science (ed. C. M. Davies) (Academic Press, London 1966), pp. 137–162.Google Scholar
  54. Walton, W. M., andWoolcock, A.,The Suppression of Airborne Dust by Water Spray inAerodynamic Capture of Particles (ed. E. G. Richardson) (Pergamon Press, Oxford 1960), pp. 129–153.Google Scholar
  55. Wang, P. K., Grover, S. N., andPruppacher, H. R. (1978),On the Effect of Electric Charges on the Scavenging of Aerosol Particles by Clouds and Small Raindrops, J. Atmos. Sci.35, 1735–1743.Google Scholar
  56. Wang, P. K., andPruppacher, (1977),An Experimental Determination of the Efficiency with which Aerosol Particles are Collected by Water Drops in Subsaturated Air, J. Atmos. Sci.34, 1664–1669.Google Scholar

Copyright information

© Birkhäuser Verlag 1982

Authors and Affiliations

  • Franco Prodi
    • 1
    • 2
  • Francesco Tampieri
    • 2
  1. 1.Osservatorio Geofisico dell'UniversitàModenaItaly
  2. 2.Reparto Nubi e PrecipitazioniIstituto FISBAT-CNRBolognaItaly

Personalised recommendations