pure and applied geophysics

, Volume 135, Issue 1, pp 125–133 | Cite as

What do climate models tell us about global warming?

  • Christopher Essex
Article

Abstract

It has become widely accepted that an increase in the infrared optical depth of the atmosphere must lead to an increase in the global surface temperature. It is demonstrated here that this need not be so, implying a limited predictive capability for modern climate models.

Key words

Global warming greenhouse effect heat radiation climate models physical invariance ad hoc invariance convection albedo 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boer, J. G., McFarlane, N. A., Laprise, R., Henderson, J. D., andBlanchet, J.-P. (1984),The Canadian Climate Centre Spectral Atmospheric General Circulation Model, Atmosphere-Ocean22, 397–429.Google Scholar
  2. Carrera-Patiño, M. E., andBerry, R. S. (1986),Entropy Production in Stopping Atoms with Laser Light, Phys. Rev.A34, 4728–4736.Google Scholar
  3. Chamberlain, J. W.,The Theory of Planetary Atmospheres (Academic Press, New York 1978) p. 12.Google Scholar
  4. Corby, G. A., Gilchrist, A., andRowntree, P. R. (1977),United Kingdom Meteorological Office Five-level General Circulation Model, Meth. Computat. Phys.17, 67–94.Google Scholar
  5. Ellis, J. S., Von der Haar, T. H., Levitus, S., andOort, A. H. (1978).The Annual Variation in the Global Heat Balance of the Earth, J. Geophys. Res.83, 1958–1962.Google Scholar
  6. Ellsaesser, H. W. (1984),The Climatic Effect of CO 2:A Different View, Atmospheric Environment18, 431–434.Google Scholar
  7. Essex, C. (1986),Trace Gases and the Problem of False Invariants in Climate Models, Climatol. Bull.20, 19–25.Google Scholar
  8. Gregg, W. R. (1922),Standard Atmosphere, National Advisory Committee for Aeronautics Reports147.Google Scholar
  9. Lax, P. D. (1987),Mathematics and Computing, (Invited) Lecture at International Conference for Industrial and Applied Mathematics, Paris 1987, Abstract inICIAM 87 Final Program, INRIA Le Chesnay, 9.Google Scholar
  10. Lee, R. (1973),The “Greenhouse” Effect, J. Appl. Meteor.12, 556–557.Google Scholar
  11. Lighthill, J. (1986),The Recently Recognized Failure of Predictability in Newtonian Dynamics, Proc. R. Soc. Lond.A407, 35–50.Google Scholar
  12. Manabe, S., andWetherald, R. T. (1967),Thermal Equilibrium of the Atmosphere with a Given Distribution of Relative Humidity, J. Atmos. Sci.24, 241–259.Google Scholar
  13. McAvaney, B. J., Bourke W., andPuri, K. (1978),A Global Spectral Model for Simulation of the General Circulation, J. Atmos, Sci.35, 1557–1583.Google Scholar
  14. Metcalf, H. J. (1989), Private Communication.Google Scholar
  15. Ramanathan, V., andCoakley, J. A. (1978),Climate Modeling through Radiative-convective Models, Rev. Geophys. Space Phys.16, 465–489.Google Scholar
  16. Schlesinger, M. E. (1984),Climate Model Simulation of CO 2-induced Climate Change, Adv. Geophys.26, 141–235.Google Scholar
  17. Schlesinger, M. E., andMitchell, J. F. B. (1987),Climate Model Simulations of the Equilibrium Climate Response to Increased Carbon Dioxide, Rev. Geophys.25, 760–798.Google Scholar
  18. Smagorinsky, J., Manabe, S., andHolloway, J. L. (1965),Numerical Results from a Nine-level General Circulation Model of the Atmosphere, Mon. Weath. Rev.93, 727–769.Google Scholar
  19. Stone, P. H., andCarlson, J. H. (1979),Atmospheric Lapse Rate Regimes and their Parameterization, J. Atmos. Sci.36, 415–423.Google Scholar
  20. Toussaint, A. (1919),Étude de Performances d'un Avion, L'Aéronautique2, 188–196.Google Scholar

Copyright information

© Birkhäuser Verlag 1991

Authors and Affiliations

  • Christopher Essex
    • 1
  1. 1.Department of Applied MathematicsUniversity of Western OntarioLondonCanada

Personalised recommendations