pure and applied geophysics

, Volume 132, Issue 3, pp 495–504 | Cite as

Enhancement of radon signals in geophysical studies with the track technique

  • A. Tidjani
  • M. Monnin
  • J -L. Seidel


The existence of a suspected geological fault has been confirmed using Solid State Nuclear Track Detectors (SSNTDs) by measuring radon concentration variations in the upper soil above its inferred position. The results obtained prompted us to increase the natural radon signal in the soil, using an additional radon source; this “enhancement technique,” has been experimentally checked with SSNTD detectors.

Key words

Radon S.S.N.T.D. geochemical tracer fault atmospheric parameters enhancement technique 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Clements, W. E., andWilkening, M. H. (1974),Atmospheric Pressure Variation Effects on Radon 222 Transport Across the Earth-air Interface, J. Geophys. Res.79 (3), 5025–5029.Google Scholar
  2. Cox, M. E., Cuff, K. E., andThomas, D. N. (1980),Variations of Ground Radon Concentration with Activity of Kilauea Volcano Hawaii, Nature288, 74–76.Google Scholar
  3. Crenshaw, W. B., Williams, S., andStoiber, R. E. (1982),Fault Location by Radon and Mercury Detection at an Active Volcano in Nicaragua, Nature300, 345–346.Google Scholar
  4. Cross, W. G., andTommasino, L. (1971),Rapid Reading Technique for Nuclear Particle Damage Tracks in Thin Foils, Rad. Effects5, 85.Google Scholar
  5. De la Cruz-Reyna, S., Mena, M., Segovia, N., Chalot, J. F., Seidel, J. L., andMonnin, M. (1985),Radon Emanometry in Soil Gases and Activity in Ashes from El Chichon Volcano, Pure Appl. Geophys123(3), 407–421.Google Scholar
  6. Fleischer, R. L., Price, P. B., andWalker, R. M.,Nuclear Tracks in Solids: Principles and Applications (University of California Press, Berkeley 1975).Google Scholar
  7. Fleischer, R. L. (1980),Radon Flux from the Earth: Methods of Measurements by the Nuclear Track Technique, J. Geophys. Res.V85 (C12), 7553–7556.Google Scholar
  8. Fleischer, R. L., Hart, W. R., andMogro-Campero, A. (1980),Radon Emanation over an Ore Body: Search for Long Distance Transport of Radon, Nucl. Instr. and Meth.173, 169–181.Google Scholar
  9. Fleischer, R. L., andMogro-Campero, A. (1981),Radon Transport in the Earth: A Tool for Uranium Exploration and Earthquake Prediction, 11th Int. Conf. on SSNTD, Bristol, 12 Sept. 1981.Google Scholar
  10. Israël, H., andBjörnsson, S. (1966),Radon (Rn 222) and Thoron (Rn 220) in Soil over Faults, Zeit. Geophysik32 (5/6), 48–64.Google Scholar
  11. King, C. Y. (1980),Episodic Radon Changes in Subsurface Soil Gas Along Active Faults and Possible Relation to Earthquakes, J. Geophys. Res.85 (B6), 3065–3078.Google Scholar
  12. King, C. Y. (1985),Impulsive Radon Emanation on a Creeping Segment of the San Andreas Fault, California, Pure Appl. Geophys.122, 340–352.Google Scholar
  13. Kristiansson, K. (1980),A New Model Mechanism for the Transportation of Radon Through the Ground, Soc. of Expl. Geophys. Ann. Int. Meeting, Tech. Paper 5, 2535.Google Scholar
  14. Seidel, J. L. (1982),Radon émanometrie appliquée à la géophysique interne, Thesis 679 D, Clermont-Ferrand II University, France.Google Scholar
  15. Seidel, J. L., andMonnin, M. (1982),Some Radon Activity Measurements of Geophysical Significance, Proc. 11th. Int. Conf. on SSNTD, Bristol, U.K.Google Scholar
  16. Somogyi, G., Medveczkyi, L., Hunyadi, I., Nyako, B. (1977),Automatic Spark Counting of Alpha Tracks in Plastic Foils, Nucl. Instr. and Meth.1 (2), 131–138.Google Scholar
  17. Somogyi, G., Medveczkyi, L., Varga, Zs., Gerzson, I., andVados, I. (1978),Field Macroradiography Radon Exhalation, Isotopenpraxis14, 10.Google Scholar
  18. Tanner, A. B. (1964),Radon migration in ground: a review, InNatural Radiation Environment (eds.Adams, J. A. S., andLowder W. M.) (Univ. Chicago 1964), pp. 253–276.Google Scholar

Copyright information

© Birkhäuser Verlag 1990

Authors and Affiliations

  • A. Tidjani
    • 1
  • M. Monnin
    • 1
  • J -L. Seidel
    • 1
  1. 1.Laboratoire de Physique CorpusculaireUniversité de Clermont, CNRS-IN2P3AubièreFrance

Personalised recommendations