pure and applied geophysics

, Volume 102, Issue 1, pp 193–222 | Cite as

The diurnal and semidiurnal barometric oscillations global distribution and annual variation

  • B. Haurwitz
  • Ann D. Cowley


The global distributions of the annual and seasonal means of the diurnal (S1) and semidiurnal (S2) surface pressure oscillations are investigated by spherical harmonic analysis. The main waves are,S11 (with wave number 1) forS1 andS22 forS2.S11 is much less predominant among the waves ofS1 thanS22 among those ofS2. As in the case of the lunar semidiurnal barometric tideL2 the pressure maxima occur earlier in the Southern than in the Northern Hemisphere. In the case ofS2 the standing waveS20 and the waveS23 are also of interest besidesS22. Although the present analysis extends only from 60°N to 60°S, whileS20 is largest at polar latitudes, its results show thatS20 should be smaller at high southerly than at high northerly latitudes, as has been observed. Thus this observed asymmetrical distribution ofS20 may be due to causes outside the polar regions rather than to their geographical differences. The best approximation to the observed distribution ofS20 is obtained by including a mode representing an oscillation independent of longitude and latitude indicating a small semidiurnal variation of the mean global surface presure, which is an unlikely result on physical grounds.

The seasonal variation ofS11 expressed in percent of the annual mean is smaller than that ofS22, and both are less than the unexplained seasonal variation ofL22.

The main wavesS11 andS22 are expressed not only by associated Legendre functions, but also by Hough functions.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. Bartels,A table of daily integers, seasonal, solar, lunar and geomagnetic, Sci. Rep. No. 2AF 19(604)-503, Geophys. Inst., Univ. Alaska (1954).Google Scholar
  2. [2]
    S. L. Belousov (transl. by D. E. Brown),Tables of Normalized Associated Legendre Polynomials, (Pergamon Press.; The MacMillan Co., New York, 1962) 379 pp.Google Scholar
  3. [3]
    S. T. Butler andK. A. Small,The excitation of atmospheric oscillations, Proc. Roy. Lond. A,274 (1963), 91–121.Google Scholar
  4. [4]
    Th. H. Carpenter,The distribution of the semidiurnal pressure oscillation on the Antarctic continent, J.G.R.68 (1963), 2211–2215.Google Scholar
  5. [5]
    S. Chapman andR. S. Lindzen,Atmospheric Tides, (D. Reidel Publishing Co., Dordrecht-Holland, (1970), 200 pp.Google Scholar
  6. [6]
    T. W. Flattery,Hough functions, Tech. Rep. 21 to NSF (Grant NSF-GP-471) Dept. of Geophys., Sci. U. of Chi. (1967).Google Scholar
  7. [7]
    J. von Hann,Untersuchungen über die tägliche Oscillation des Barometers, Denkschr. Akad. Wiss. Wien, Math.-Nat. Kl.55 (1889), 73 pp.Google Scholar
  8. [8]
    B. Haurwitz andF. Möller,The semidiurnal air temperature variation and the solar air tide, Arch. Meteorol. Geophys. und Bioklimat., A,8 (1955), 332–350.Google Scholar
  9. [9]
    B. Haurwitz,The geographical distribution of the solar semi-diurnal pressure oscillation, New York University Meteorol. Papers5, 2 (1956), 1–36.Google Scholar
  10. [10]
    B. Haurwitz andG. M. Sepúlveda,Geographical distribution of the semidiurnal pressure oscillation at different seasons, Journ. Met. Soc. Japan, 75th Anniv. Vol. (1957), 149–155.Google Scholar
  11. [11]
    B. Haurwitz andG. M. Sepúlveda,The semidiurnal pressure oscillation in high latitudes, Arch. Meteorol., Geophys. und Bioklimat. A,10, (1957), 29–42.Google Scholar
  12. [12]
    B. Haurwitz,The diurnal pressure oscillation, Arch. Meteorol. Geophys. und Bioklimat. A,14 (1965), 361–379.Google Scholar
  13. [13]
    B. Haurwitz andA. D. Cowley,The lumar barometric tide, its global distribution and annual variation, PAGEOPH77 (1969), 122–150.Google Scholar
  14. [14]
    W. Kertz,Die thermische Erregungsquelle der atmosphärischen Gezeiten, Nachr. Akad. Wiss. Göttingen, IIa, no. 6 (1956), 145–166.Google Scholar
  15. [15]
    W. Kertz,Partialwellen in den halb-und vierteltärigen atmosphärischen Gezeiten, Arch. Meteorol., Geophys. und Bioklimat. A,11 (1959), 48–63.Google Scholar
  16. [16]
    B. Lettau,Comments on paper by Thomas H. Carpenter, ‘The distribution of the semidiurnal pressure oscillation on the Antarctic continent’, J.G.R.70, (1965), 3509–3510.Google Scholar
  17. [17]
    R. S. Lindzen,Thermally driven diurnal tide in the atmosphere, Quart. Journ. Roy. Met. Soc.93 (1967), 18–42.Google Scholar
  18. [18]
    M. Siebert,Atmospheric Tides, in ‘Advances in Geophysics’17 (Academic Press, New York-London, 1961), pp. 105–187.Google Scholar
  19. [19]
    G. C. Simpson,The twelve-hourly barometer oscillation, Quart. Journ., Roy. Met. Soc.44 (1918), 1–19.Google Scholar
  20. [20]
    J. Spar,Characteristics of the semidiurnal pressure wave in the United States, Bull. Am. Meteorol. Soc.33 (1952), 438–441.Google Scholar
  21. [21]
    M. B. Wilkes,Oscillations of the earth's atmosphere, (Cambridge Univ. Press, 1949) (see p. 14).Google Scholar
  22. [22]
    A. Schmidt,Tafeln der normierten Kugelfunktionen, (Engelhard-Reyher, Gotba, 1935), 52 pp.Google Scholar
  23. [23]
    W. Kertz,Atmosphärische Gezeiten, in ‘Handbuch der Physik’48 (Springer-Verlag Berlin, 1957) pp. 928–981.Google Scholar

Copyright information

© Birkhäuser Verlag 1973

Authors and Affiliations

  • B. Haurwitz
  • Ann D. Cowley

There are no affiliations available

Personalised recommendations