Skip to main content
Log in

A review of rock mechanics studies in the United States pertinent to earthquake prediction

  • Published:
pure and applied geophysics Aims and scope Submit manuscript

Abstract

Premonitory phenomena such as dilatancy, creep, acoustic emission, and changes in seismic velocity and attenuation, electrical resistivity, magnetic moment, and gas emission, which occur before fracture of initially intact rock and before stick-slip on faults or between finely ground surfaces of rock, have been reviewed and discussed in relation to earthquake prediction. This review is restricted to the results of laboratory experiments that have been carried out in the United States of America.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Byerlee, J. D. (1970),The mechanics of stick-slip, Tectonophysics,9, 475–486.

    Google Scholar 

  2. Brace, W. F. (1968),Current laboratory studies pertaining to earthquake prediction, Tectonophysics6, 75.

    Google Scholar 

  3. Brace, W. F. (1969),Laboratory studies pertaining to earthquakes, Trans. N. Y. Acad. Sci.31, 892.

    Google Scholar 

  4. Brace, W. F. (1972),Laboratory studies of stick-slip and their application to earthquakes, Tectonophysics4, 189–200.

    Google Scholar 

  5. Brace, W. F. (1974),Experimental studies of seismic behavior of rocks under crustal conditions, Eng. Geol.8, 109–127.

    Google Scholar 

  6. Brace, W. F. (1977),Recent laboratory studies of earthquake mechanics and prediction, U.S.-Japanese Seminar on Earthquake Precursors, Tokyo, Japan.

  7. Brace, W. F., Paulding, B. W. andScholz, C. (1966),Dilatancy in the fracture of crystalline rocks, J. Geophys. Res.,71, 3939–3954.

    Google Scholar 

  8. Schock, R. N., Heard, H. C. andStephens, D. R. (1973),Stress-strain behavior of granodiorite and two greywackes in compression to 20 kilobars, J. Geophys. Res.78, 5922–5941.

    Google Scholar 

  9. Hadley, K. (1975),Dilatancy in rock at elevated temperature, Trans. Am. Geophys. Union,56, 1060.

    Google Scholar 

  10. Tapponnier, P. andBrace, W. F. (1976),Development of stress-induced microcracks in westerly granite, Int. J. Rock Mech. Min. Sci.13, 103–112.

    Google Scholar 

  11. Hadley, K. (1976),The effect of cyclic stress on dilatancy: Another look, J. Geophys. Res.81, 2471–2474.

    Google Scholar 

  12. Haimson, B. C.,Mechanical behavior or rock under cyclic loading, inAdvanced rock mechanics Vol. 11A (National Science Foundation, Washington, D. C. (1974) p. 373.

    Google Scholar 

  13. Scholz, C. H. andKranz, R. (1974),Notes on dilatancy recovery, J. Geophys. Res.,79, 2132–2135.

    Google Scholar 

  14. Zoback, M. D. andByerlee, J. D. (1975),The effect of cyclic differential stress on dilatancy in Westerly granite under uniaxial and triaxial conditions, J. Geophys. Res.80, 1526–1530.

    Google Scholar 

  15. Liu, Hsu-Ping andLivanos, A. C. R. (1976),Dilatancy and precursory bulging along incipient fracture zones in uniaxially compressed Westerly granite, J. Geophys. Res.81, 3495–3510.

    Google Scholar 

  16. Hadley, K. (1975),Azimuthal variation of dilatancy, J. Geophys. Res.80, 4845–4850.

    Google Scholar 

  17. Spetzler, H., Soga, M., Mizutani, H. andMartin, R. J.,Strain fields associated with fracture under high pressure viewed with holographic interferometry, inHigh Pressure Research Applications to Geophysics, ed. M. H. Manghani and S. Akimoto (Academic Press, New York 1977).

    Google Scholar 

  18. Zoback, M. D. andByerlee, J. D. (1975),Effect of high pressure deformation on permeability of Ottawa sand, Am. Assoc. Petroleum Geologists Bull.60, 1531–1542.

    Google Scholar 

  19. Zoback, M. D. andByerlee, J. D. (1975)A note on the deformational behavior and permeability of crushed granite, Int. J. Rock Mech. Min. Sci.13, 291–294.

    Google Scholar 

  20. Brace, W. F. (in press),Volume changes during fracture and frictional sliding,Pageoph.

  21. Goodman, R. E. (1970),The deformability of joints, ASTM, STP 477 (Amer. Soc. for Testing Matls.) 174–196.

  22. Goodman, R. E. andOhnishi, Y. (1973),Undrained shear testing of jointed rock, Rock Mechanics5, 129–149.

    Google Scholar 

  23. Sundaran, P. N., Goodman, R. E. andWang, Chi-Yuen (1976),Precursory and coseismic water pressure variations in stick-slip experiment, Geology4, 108–110.

    Google Scholar 

  24. Logan, J. M. (in press),Creep stable sliding and premonitory slip,Pageoph.

  25. Obert, L., Brady, B. T. andSchemechel, F. W. (1975)The effect of normal stress on the shear resistance of rock, Rock Mechanics8, 57–72.

    Google Scholar 

  26. Hadley, K. (1973),Laboratory investigations of dilatancy and motion on fault surface at low confining pressure, Proc. Conf. on Tectonic Problems on the San Andreas fault system. R. L. Kovach and A. Nur. (eds), Geol. Sciences XIII, Stanford Univ. p. 427–435.

  27. Brace, W. F., Walsh, J. B. andFrangos, W. T. (1968),Permeability of granite under high pressure, J. Geophys. Res.73, 2225.

    Google Scholar 

  28. Zoback, M. D. andByerlee, J. D. (1975),Permeability and effective stress, Am. Assoc. Petroleum Geologists Bull.59, 154.

    Google Scholar 

  29. Zoback, M. D. andByerlee, J. D. (1975),The effect of microcrack dilatancy on the permeability of Westerly granite, J. Geophys. Res.80, 752–755.

    Google Scholar 

  30. Summers, R., Winkler, K. andByerlee, J. (in press),Permeability changes during the flow of water through Westerly granite at temperatures to 400 C, J. Geophys. Res.

  31. Pratt, H. R., Black, A. D., Brace, W. F. andSwolfs, H. (1977),Elastic and transport properties of an in situjointed granite, Int. J.Rock Mech. Min. Sci.14, 45.

    Google Scholar 

  32. Byerlee, J. D. (in press),Friction of rocks,Pageoph.

  33. Hanks, T. C. (in press),Earthquakes stress drops-ambient tectonic stresses and the stresses that drive plate motions,Pageoph.

  34. Scholz, C. H. (1968),Mechanism of creep in brittle rock, J. Geophys. Res.73, 3295–3302.

    Google Scholar 

  35. Scholz, C. H. (1968),Microfractures aftershocks and seismicity, Bull. Seismol. Soc. Amer.58, 1117–1130.

    Google Scholar 

  36. Martin, R. J. (1972),Time dependent crack growth in quartz and its application to the creep of rocks, J. Geophys. Res.77, 1406–1419.

    Google Scholar 

  37. Scholz, C. G. (1972),Static fatigue of quartz, J. Geophys. Res.77, 2104–2114.

    Google Scholar 

  38. Scholz, C. H. andMartin, R. J. (1971),Crack growth and static fatigue in quartz, J. Amer. Ceram. Soc.54, 474.

    Google Scholar 

  39. Martin, R. J. andDurham, W. B. (1975),Mechanisms of crack growth in quartz, J. Geophys. Res.80, 4837–4844.

    Google Scholar 

  40. Engelder, J. T., Logan, J. M. andHandin, J. (1975),The sliding characteristics of sandstone on quartz fault gouge,Pageoph 113, 69–85.

    Google Scholar 

  41. Dieterich, J. H. (1972),Time dependent friction in rocks, J. Geophys. Res.77, 3690–3697.

    Google Scholar 

  42. Scholz, C. H., Molnar, P. andJohnson, T. (1972),Detailed studies of frictional sliding of granite and implications for the earthquake mechanism, J. Geophys. Res.77, 0392–6406.

    Google Scholar 

  43. Johnson, T. L. (1975),A comparison of frictional sliding on granite and dunite surfaces, J. Geophys. Res.80, 2600–2605.

    Google Scholar 

  44. Scholz, C. H. andEngelder, J. T. (1975),The role of asperity indentation and ploughing in rock friction-asperity creep and stick-slip, Int. J. Rock Mech. Min. Sci.13, 149–154.

    Google Scholar 

  45. Byerlee, J. D. andBrace, W. F. (1908),Stick-slip stable sliding and earthquakes, J. Geophys. Res.30, 6031.

    Google Scholar 

  46. Byerlee, J. D. (1967),Frictional characteristics of granite under high confining pressure, J. Geophys. Res.72, 3639.

    Google Scholar 

  47. Byerlee, J. D. andSummers, R. (1975),Stable sliding preceding stick-slip on fault surfaces in granite at high pressure,Pageoph 113, 63.

    Google Scholar 

  48. Byerlee, J. D., Myachkin, V., Summers, R. andVoevoda, O. (in press),Structures developed in fault gouge during stable sliding and stick-slip, Tectonophysics.

  49. Birch, F. (1960),The velocity of compressional waves in rocks to 10 kbars, J. Geophys. Res.65, 1083.

    Google Scholar 

  50. Simmons, G. (1964),Velocity of shear waves in rocks to 10 kbars, J. Geophys. Res.69, 1121.

    Google Scholar 

  51. Nur, A. andSimmons, G. (1969),The effect of saturation on velocity in low porosity rocks, Earth and Planet. Sci. Lett.7, 183–193.

    Google Scholar 

  52. Nur, A. (1972),Dilatancy pore fluids and premonitory variations of t s/tp travel times, Bull. Seismic. Soc. Am.62, 1217–1222.

    Google Scholar 

  53. Scholz, C. H., Sykes, L. R. andAggarwal, Y. P. (1973),Earthquake prediction: A physical basis, Science181, 801–810.

    Google Scholar 

  54. Bonner, B. P. (1975),V p/Vs in saturated granodiorite loaded to failure,Pageoph 113, 25–29.

    Google Scholar 

  55. Hadley, K. (1975),V p/Vs anomalies in dilatant rock samples,Pageoph,113, 1–23.

    Google Scholar 

  56. Gupta, I. M. (1973),Seismic velocities in rock subjected to axial loading up to shear fracture, J. Geophys. Res.78, 6936–5943.

    Google Scholar 

  57. Nur, A. andSimmons, G. (1969),Stress induced velocity anisotrophy in rock: An experimental study, J. Geophys. Res.74, 6667–6674.

    Google Scholar 

  58. Bonner, B. P. (1974),Shear wave birefringence in dilating granite, Geophys. Res. Lett.,1, 217–220.

    Google Scholar 

  59. Lockner, D. A., Walsh, J. B. andByerlee, J. D. (in press),Changes in seismic velocity and attenuation during deformation of granite, J. Geophys. Res.

  60. Spetzler, H. (in press),Seismic velocities during fracture and frictional sliding,Pageoph.

  61. Griggs, D. T., Jackson, D. D., Knopp, L. andShreve, R. L. (1975),Earthquake prediction: Modelling of the anomalous V p/Vs source region, Science187, 537–539.

    Google Scholar 

  62. Wang, Chi-Yuen, Goodman, R. E. andSundaram, P. H. (1975),Variations of V p and Vs in granite premonitory to shear rupture and stick-slip sliding: Application to earthquake prediction, Geophys. Res. Lett.2, 309–311.

    Google Scholar 

  63. Peselnick, L., Dieterich, J. H., Myachkin, V. I. andSobolev, G. A. (1975),Variation of compressional velocities in simulated fault gouge under and direct shear stress, Geophys. Res. Lett.3, 369–372.

    Google Scholar 

  64. Lockner, D. A. andByerlee, J. D. (submitted to Bull. Seis. Soc. Am.),Velocity anomalies; an alternative explanation, Part I.

  65. Soga, N., Mizutani, H., Spetzler, H. andMartin, R. J. (submitted to J. Geophys. Res.),The effect of dilatancy on velocity anisotropy in Westerly granite.

  66. Obert, L. (1977),The microseismic method: Discovery and early history, Proc. First Conf. onAcoustic emission microseismic activity in geologic structures and materials, Trans. Tech. Publications, p. 11–12. (72).

  67. Hardy, H. R. (1977),Emergence of acoustic emission, microseismic activity as a tool in geomechanics, Proc. First Conf. onAcoustic emission microseismic activity in geologic structures and materials, Trans. Tech. Publications, p. 13–31.

  68. Scholz, C. H. (1968),Microfracturing and the inelastic deformation of rock in compression, J. Geophys. Res.73, 1417.

    Google Scholar 

  69. Lockner, D. andByerlee, J. (1977),Acoustic emission and creep in rock at high confining pressure and differential stress, Bull. Seis. Soc. Am.67, 247–258.

    Google Scholar 

  70. Scholz, C. H. (1968),Experimental study of the fracturing process in brittle rock, J. Geophys. Res.73, 1447–1454.

    Google Scholar 

  71. Haimson, B. C. andKim, K. (1977),Acoustic emission and fatigue mechanism of rock, Proc. First Conf. onAcoustic emission and microseismic activity in geologic structures and materials, Trans. Tech. Publications, p. 335–355.

  72. Scholz, C. H. (1968),Mechanism of creep in brittle rock, J. Geophys. Res.73, 3295.

    Google Scholar 

  73. Kahir, A. W. (1977),A study of acoustic emission during laboratory fatigue tests on Tennessee sandstone, Proc. First Conf. onAcoustic emission and microscopic activity in geologic structure and materials, Trans. Tech. Publications, p. 58–86.

  74. Brady, B. T. (1975),Laboratory investigations of tilt and seismicity anomalies in rock before failure, Nature,260, 108–111.

    Google Scholar 

  75. Lockner, D. andByerlee, J. (1977),Acoustic emission and fault formation in rocks, Proc. First Conf. onAcoustic emission and microseismic activity in geologic structures and materials, Trans. Tech. Publications, p. 99–107.

  76. Rothman, R. (1977),Acoustic emission in rock stressed to failure, Proc. First Conf. onAcoustic emission and microseismic activity in geologic structures and materials, Trans. Tech. Publications, p. 109–133.

  77. Weeks, J., Lockner, D. andByerlee J. (submitted to Bull. Seis. Soc. Am.),Changes in b values during movement on cut surfaces in granite.

  78. Scholz, C. H. (1968),The frequency magnitude relation of microfracturing in rock and its relation to earthquakes, Bull. Seis. Soc. Am.58, 399–415.

    Google Scholar 

  79. Stesky, R. M. (1975),Acoustic emission during high temperature frictional sliding,Pageoph 113, 31–43.

    Google Scholar 

  80. Brace, W. F. andOrange, A. S. (1966),Electrical resistivity changes in staturated rock under stress, Science153, 1525–1526.

    Google Scholar 

  81. Brace, W. F. andOrange, A. S. (1968),Electrical resistivity changes in saturated rocks during fracture and frictional sliding, J. Geophys. Res.73, 1433–1445.

    Google Scholar 

  82. Russell, J. E. andHoskins, E. R.,Correlation of electrical resistivity of dry rock with cumulated damage, Proc. 11th Sympos. on rock mechanics, Berkeley, June 1959 (SME. AIMMPE, New York, 1970), p. 213.

    Google Scholar 

  83. Brace, W. F. (1975),Dilatancy related electrical resistivity changes in rocks,Pageoph 113, 207–217.

    Google Scholar 

  84. Wang, C. Y., Goodman, R. E., Sundaram, P. M. andMorrison, H. F. (1975),Electrical resistivity of granite in frictional sliding: Application to earthquake prediction, Geophys. Res. Lett.2, 525–528.

    Google Scholar 

  85. Wang, C. Y., Sundaram, P. N. andGoodman, R. E. (in press),Electrical resistivity changes in rocks during frictional sliding and fracture,Pageoph.

  86. Mazzella, A. andMorison, H. F. (1974),Electrical resistivity variations associated with earthquake on the San Andreas fault, Science185, 855.

    Google Scholar 

  87. Kean, W. F., Day, R., Fuller, M. andSchmidt, V. A. (1975),The effect of uniaxial compression on the initial susceptibility of rocks as a function of grain size and composition of their constituent titanomagnetites, J. Geophys. Res.81, 861.

    Google Scholar 

  88. Martin, R. J. andWyss, M. (1975),Magnetism of rocks and volumetric strain in uniaxial failure tests,Pageoph 113, 51–61.

    Google Scholar 

  89. Wyss, M. andMartin, R. J. (1977),Tectonomagnetism and magnetic changes in rocks prior to failure, Proc. of Conf. II, Experimental studies of rock friction with application to earthquake prediction, U.S. Dpt. of Interior Geol. Survey National hazards reduction program, 28–30 April, 1977.

  90. Chiang, J. H., Moore, W. S. andTalwani, P. (1977),Laboratory studies of the relationship between surface area and radon release in Henderson gneiss. Trans. Am. Geophys. Union58, 434.

    Google Scholar 

  91. Giardini, A. A., Subbarayuda, G. V. andMelton, C. E. (1975),The emission of occluded gas from rocks as a function of stress: Its possible use as a tool for predicting earthquakes, Geophys. Res. Lett.3, 355–358.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Byerlee, J. A review of rock mechanics studies in the United States pertinent to earthquake prediction. PAGEOPH 116, 586–602 (1978). https://doi.org/10.1007/BF00876526

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00876526

Key words

Navigation