Advertisement

pure and applied geophysics

, Volume 138, Issue 4, pp 531–548 | Cite as

Towards a new view of earthquake phenomena

  • Keisuke Ito
Article

Abstract

Recent advances in the theory of fracture and fragmentation are reviewed. Empirical laws in seismology are interpreted from a fractal perspective, and earthquakes are viewed as a self-organized critical phenomenon (SOC). Earthquakes occur as an energy dissipation process in the earth's crust to which the tectonic energy is continuously input. The crust self-organizes into the critical state and the temporal and spatial fractal structure emerges naturally. Power-law relations known in seismology are the expression of the critical state of the crust. An SOC model for earthquakes, which explains the Gutenberg-Richter relation, the Omori's formula of aftershocks and the fractal distribution of hypocenters, is presented. A new view of earthquake phenomena shares a common standpoint with other disciplines to study natural complex phenomena with a unified theory.

Key words

Fractal earthquake critical phenomena self-organization cellular automaton multifractal 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aki, K. (1979),Characterization of Barriers on an Earthquake Fault, J. Geophys. Res.84, 6140–6148.Google Scholar
  2. Aki, K.,A probabilistic synthesis of precursory phenomena. InEarthquake Prediction: An International Review, M. Ewing Ser., vol. 4 (eds. Simpson, D. W., and Richards, P. G.) (AGU, Washington, D. C. 1981) pp. 566–574.Google Scholar
  3. Allegre, C. J., Le Mouel, andProvost, A. (1982),Scaling Rules in Rock Fracture and Possible Implications for Earthquake Prediction, Nature297, 47–49.Google Scholar
  4. Atmanspacher, H., Schneingraber, H., andWiedenmann, G. (1989),Determination of f(α) for a Limited Random Point Set, Phys. Rev.A40, 3954–3963.Google Scholar
  5. Bak, P., andTang, C. (1989),Earthquakes as a Self-organized Critical Phenomenon, J. Geophys. Res.94, 15,635–15,637.Google Scholar
  6. Bak, P., Tang, C., andWiesenfeld, K. (1987),Self-organized Criticality: An Explanation of 1/f Noise, Phys. Rev. Lett.59, 381–384.Google Scholar
  7. Bak, P., Tang, C., andWiesenfeld, K. (1988),Self-organized Criticality, Phys. Rev.A38, 364–371.Google Scholar
  8. Bak, P., Chen, K., andCreutz, M. (1989),Self-organized Criticality in the ‘Game of Life’, Nature342, 780–782.Google Scholar
  9. Bebbington, M., Vere-Jones, D., andZheng, X. (1990),Percolation Theory: A Model for Rock Fracture? Geophys. J. Int.100, 215–220.Google Scholar
  10. Burridge, R., andKnopoff, L. (1967),Model and Theoretical Seismicity, Bull. Seismol. Soc. Am.57, 341–371.Google Scholar
  11. Carlson, J. M., andLanger, J. S. (1989),Properties of Earthquakes Generated by Fault Dynamics, Phys. Rev. Lett.62, 2632–2635.Google Scholar
  12. Chen, K., Bak, P., andObukhov, S. P. (1991),Self-organized Criticality in Crack-progagation Model of Earthquakes, Phys. Rev.A43, 625–630.Google Scholar
  13. Dhar, D., andRamaswamy, R. (1989),Exactly Solved Model of Self-organized Critical Phenomena, Phys. Rev. Lett.63, 1659–1662.Google Scholar
  14. Durrett, R. (1988),Crabgrass, Measles, and Gypsy Moths: An Introduction to Interacting Particle Systems, Mathemat. Intelligence10, 37–47.Google Scholar
  15. Enya, O. (1901),On Aftershocks, Rep. Earthq. Inv. Comm.35, 35–56 (in Japanese).Google Scholar
  16. Gardner, M. (1970),Mathematical Games Sci. Am.223 (10), 120–123.Google Scholar
  17. Geilikman, M. B., Golubeva, T. V., andPisarenko, V. F. (1990),Multifractal Patterns of Seismicity, Earth Planet. Sci. Lett.99, 127–132.Google Scholar
  18. Glansdorff, P., andPrigogine, I.,Theory of Structure Stability and Fluctuations (Wiley and Sons, London 1971).Google Scholar
  19. Griffith, A. A. (1921),The Phenomena of Rupture and Flow in Solids, Phil. Trans. R. Soc.A221, 163–198.Google Scholar
  20. Griffith, A. A. (1924),The Theory of Rupture, Proc. Ist Intern. Cong. Appl. Mech., Delft, pp. 55–63.Google Scholar
  21. Haken, H.,Synergetics: Nonequilibrium Phase Transitions and Self-organization in Physics, Chemistry and Biology (Springer, Berlin 1977).Google Scholar
  22. Haken, H.,Advanced Synergetics (Springer, Berlin 1983).Google Scholar
  23. Halsey, T. C., Jensen, M. H., Kadanoff, L. P., Procaccia, I., andShraiman, B. I. (1986),Fractal Measures and their Singularities: The Characterization of Strange sets, Phys. Rev.A33, 1141–1151.Google Scholar
  24. Haskell, N. A. (1969),Elastic Displacements in the Near Field of a Propagating Fault, Bull. Seismol. Soc. Am.59, 865–908.Google Scholar
  25. Herrmann, H. J., andRoux, S., eds.,Statistical Models for the Fracture of Disordered Media (Elsevier, Amsterdam 1990).Google Scholar
  26. Herrmann, H. J.,Fractures. InFractals and Disordered Systems (eds. Bunde, A., and Havlin, S.) (Springer-Verlag, 1991) pp. 175–205.Google Scholar
  27. Hirabayashi, T., andIto, K. (1990),Multifractal Analysis of Earthquakes, Pure and Appl. Geophys., this issue.Google Scholar
  28. Hirata, T. (1987),Omori's Power Law Aftershock Sequences of Microfracturing in Rock Fracturing Experiment, J. Geophys. Res.92, 6215–6221.Google Scholar
  29. Hirata, T., andImoto, M. (1991),Multifractal Analysis of Spatial Distribution of Microearthquakes in the Kanto Region, Geophys. J. Int.107, 155–162.Google Scholar
  30. Hirata, T., Satoh, T., andIto, K. (1987),Fractal Structure of Spatial Distribution of Microfracturing in Rock, Geophys. J. R. Astr. Soc.67, 697–717.Google Scholar
  31. Hwa, T., andKardar, M. (1989),Fractals and Self-organized Criticality in Dissipative Dynamics, PhysicaD38, 198–202.Google Scholar
  32. Ishimoto, M., andIida, K. (1939),Observations sur les seisms energistré par le microseismograph construite dernierment (I), Bull. Earthq. Res. Inst.17, 443–478 (in Japanese).Google Scholar
  33. Ito, K., andMatsuzaki, M. (1990),Earthquakes as Self-organized Critical Phenomena, J. Geophys. Res.95, 6853–6860.Google Scholar
  34. Jensen, M. H., Kadanoff, K., Libchaber, A., Procaccia, I., andStavans, J. (1985),Global Universality at the Onset of Chaos: Results of a Forced Rayleigh-Benard Experiment, Phys. Rev. Lett.55, 2798–2801.Google Scholar
  35. Kagan, Y. Y. (1981),Spatial Distribution of Earthquakes: The Three-point Moment Function, Geophys. J. R. Astr. Soc.67, 697–717.Google Scholar
  36. Kagan, Y. Y., andKnopoff, L. (1980),Spatial Distribution of Earthquakes: The Two-point Correlation Function, Geophys. J. R. Astr. Soc.62, 697–717.Google Scholar
  37. Kanamori, H., andAnderson, D. L. (1975),Theoretical Basis of Some Empirical Relations in Seismology, Bull. Seismol. Soc. Am.65, 1073–1095.Google Scholar
  38. King, G. (1983),The Accommodation of Large Strains in the Upper Lithosphere of the Earth and Other Solids by Self-similar Fault Systems: The Geometrical Origin of b-values, Pure and Appl. Geophys.121, 761–815.Google Scholar
  39. Kinzel, W.,Directed percolation. InPercolation Structures and Processes (ed. Weil, R.) (Adam Hilger, Bristol 1983) pp. 425–445.Google Scholar
  40. Leath, P. L. (1976),Cluster Size and Boundary Distribution near Percolation Threshold, Phys. Rev.B14, 5046–5055.Google Scholar
  41. Liggett, T. M.,Interacting Particle Systems (Springer-Verlag, New York 1985).Google Scholar
  42. Lomnitz-Adler, J., andLemus-Diaz, P. (1989),A Stochastic Model for Fracture Growth on a Heterogeneous Seismic Fault, Geophys. J. Int.99, 183–194.Google Scholar
  43. Lorenz, E. N. (1963),Deterministic Nonperiodic Flow, J. Atmos. Sci.20, 130–141.CrossRefGoogle Scholar
  44. Louis, E., andGuinea, F. (1989),Fracture as a Growth Process, PhysicaD38, 235–241.Google Scholar
  45. Mandelbrot, B. B. (1967),How Long is the Coast of Britain? Statistical Self-similarity and Fractional Dimension, Science155, 636–638.Google Scholar
  46. Mandelbrot, B. B.,Fractals: Form, Chance and Dimension (Freeman, San Francisco 1977).Google Scholar
  47. Mandelbrot, B. B.,The Fractal Geometry of Nature (Freeman, San Francisco 1982).Google Scholar
  48. Matsuzaki, M., andTakayasu, H. (1991),Fractal Features of Earthquake Phenomenon and a Simple Mechanical Model, J. Geophys. Res.96, 19,925–19,931.Google Scholar
  49. May, R. M. (1976),Simple Mathematical Models with Very Complicated Dynamics, Nature261, 459–467.Google Scholar
  50. McCauley, J. L. (1990),Introduction to Multifractals in Dynamical Systems Theory and Fully Developed Fluid Turbulence, Phys. Reports189, 225–226.Google Scholar
  51. Meakin, P. (1991),Models for Material Failure and Deformation, Science252, 226–234.Google Scholar
  52. Meneveau, C., andSreenivasan, K. R.,The multifractal spectrum of the dissipation field in turbulent flows. InPhysics of Chaos and Systems Far from Equilibrium (eds. Van, Minh-Duong, and Nicolis, B.) (North-Holland, Amsterdam 1987).Google Scholar
  53. Mori, Y., Kaneko, K., andWadati, M. (1991),Fracture Dynamics by Quenching. I. Crack Patterns, J. Phys. Soc. Japan,60, 1591–1599.Google Scholar
  54. Naftaly, U., Schwartz, M., Aharony, A., andStauffer, D. (1991),The Granular Fracture Model for Rock Fragmentation, J. Phys.A24, L1175-L1184.Google Scholar
  55. Nakanishi, H. (1991),Statistical Properties of the Cellular-automaton Model for Earthquakes, Phys. Rev.A43, 6613–6621.Google Scholar
  56. Nicolis, G., andPrigogine, I.,Self-organization in Nonequilibrium Systems: From Dissipative Structures to Order through Fluctuations (Wiley, New York 1977).Google Scholar
  57. Ogata, Y. (1988),Statistical Models for Earthquake Occurrences and Residual Analysis for Point Processes, J. Am. Stat. Assoc83 (401), 9–27.Google Scholar
  58. Ogata, Y. (1989),Statistical Model for Standard Seismicity and Detection of Anomalies by Residual Analysis, Tectonophys.169, 159–174.Google Scholar
  59. Omori, F. (1894),On Aftershocks of Earthquakes, J. Coll. Sci. Imp. Univ. Tokyo7, 111–200.Google Scholar
  60. Otsuka, M. (1971),A Simulation of Earthquakes Occurrences, Part 1: A Mechanical Model, Jishin24, 13–25 (in Japanese).Google Scholar
  61. Otsuka, M. (1972),A Chain-reaction-type Source Model as a Tool to Interpret the Magnitude-frequency Relation of Earthquakes, J. Phys. Earth20, 35–45.Google Scholar
  62. Pasad, R. R., Meneveau, C., andSreenivasan, K. R. (1988),Multifractal Nature of the Dissipation Field of Passive Scalars in Fully Developed Turbulent Flows, Phys. Rev. Lett.61, 74–77.Google Scholar
  63. Peebles, P. J. E.,Large-scale Structure of the Universe (Princeton Univ. Press, Princeton 1980).Google Scholar
  64. Pfeuty, P., andTuolouse, G.,Introduction to the Renormalization Group and Critical Phenomena (John Wiley and Sons, 1977).Google Scholar
  65. Pietronero, L., andTosatti, E. eds.,Fractals in Physics (North-Holland, Amsterdam 1986).Google Scholar
  66. Rikitake, T. (1958),Oscillations of a System of Disk Dynamos, Proc. Cambridge Philos. Soc.54, 89–105.Google Scholar
  67. Sadvskiy, M. A., Golubeva, T. V., Pisarenko, V. F., andShnirman, M. G. (1984),Characteristic Dimensions of Rock and Hierarchical Properties of Seismicity, Izv. Acad. Sci. USSR, Earth Phys. Engl. Transl.,20, 87–96.Google Scholar
  68. Selinger, R. L. B., Wang, Z.-G., Gelbart, W. M., andBen-Shaul, A. (1991),Statistical-thermodynamic Approach to Fracture, Phys. Rev.A43, 4396–4400.Google Scholar
  69. Skjertorp, A. T., andMeakin, P. (1988),Fracture in Microsphere Monolayers Studied by Experiment and Computer Simulation, Nature,335, 424–426.Google Scholar
  70. Smalley, R. F., Turcotte, D. L., andSolla, S. A. (1985),A Renormalization Group Approach to the Stick-slip Behavior of Faults, J. Geophys. Res.90, 1894–1900.Google Scholar
  71. Sornette, A., Davy, Ph., andSornette, D. (1990),Structuration of the Lithosphere in Plate Tectonics as a Self-organized Critical Phenomenon, J. Geophys. Res.95, 17,353–17,361.Google Scholar
  72. Sornette, A., andSornette, D. (1989),Self-organized Criticality and Earthquakes, Europhys. Lett.9, 197–202.Google Scholar
  73. Stanley, H. G.,Introduction to Phase Transitions and Critical Phenomena (Clarendon Press, Oxford 1971).Google Scholar
  74. Stanley, H. E., andMeakin, P. (1988),Multifractal Phenomena in Physics and Chemistry, Nature335, 405–409.Google Scholar
  75. Stauffer, D.,Introduction to Percolation Theory (Taylor and Francis, London 1985).Google Scholar
  76. Stuketee, J. A. (1958),Some Geophysical Applications of the Elasticity Theory of Dislocations, Can. J. Phys.36, 1168–1198.Google Scholar
  77. Takayasu, H.,Pattern formation of dendritic fractals in fracture and electric breakdown. InFractals in Physics (eds. Pietronero, L., and Tosatti, E.) (North-Holland, Amsterdam 1986) pp. 181–184.Google Scholar
  78. Takayasu, H., Nishikawa, I., andTasaki, H. (1988),Power-law Distribution of Aggregation Systems with Injection, Phys. Rev.A37, 3110–3117.Google Scholar
  79. Termonia, Y., andMeakin, P. (1986),Formation of Fractal Cracks in Kinetic Fracture Model, Nature320, 429–431.Google Scholar
  80. Terada, T.,Scientific Papers by Torahiko Terada, Vols. 1–6 (Iwanami Syoten, Tokyo 1931).Google Scholar
  81. Thom, R.,Structural Stability and Morphogenesis, (Benjamin, Reading, MA 1975).Google Scholar
  82. Thompson, D'arcy W.,On Growth and Form, (Cambridge Univ. Press, Cambridge 1917).Google Scholar
  83. Totsuji, H., andKihara, T. (1969),The Correlation Function for the Distribution of Galaxies, Publ. Astron. Soc. Japan21, 221–229.Google Scholar
  84. Turcotte, D. L. (1986),A Fractal Model for Crustal Deformation, Tectonophys.132, 361–369.Google Scholar
  85. Utsu, T. (1969),Aftershocks and Earthquake Statistics (I), J. Fac. Sci., Hokkaido Univ., ser. VII,3, 129–195.Google Scholar
  86. Utsu, T. (1970),, J. Fac. Sci., Hokkaido Univ., ser. VII,3, 197–266.Google Scholar
  87. Wiesenfeld, K., Tang, G., andBak, P. (1989),A Physicist's Sandbox, J. Statist. Phys.54, 1441–1458.Google Scholar
  88. Yamashina, K. (1978),Induced Earthquakes in the Izu-Peninsula by the Izu-Hanto-Oki Earthquake of 1974, Japan, Tectonophys.51, 139–154.Google Scholar
  89. Zeeman, E. C.,Catastrophe Theory (Addison-Wesley, Reading, MA 1977).Google Scholar
  90. Zhang, Yi-C. (1989).Scaling Theory of Self-organized Criticality, Phys. Rev. Lett.,63, 470–473.Google Scholar

Copyright information

© Birkhäuser Verlag 1992

Authors and Affiliations

  • Keisuke Ito
    • 1
  1. 1.Department of Earth Sciences, Faculty of ScienceKobe UniversityKobeJapan

Personalised recommendations