Advertisement

pure and applied geophysics

, Volume 131, Issue 4, pp 703–713 | Cite as

Attenuation properties of viscoelastic material

  • Mohammad Qausar
Article

Abstract

The attenuation properties of eight rheological models have been studied theoretically. The expressions forQ have been obtained by using dissipated and stored energies and/or complex modulus for each model. The dependence ofQ on frequency has been demonstrated. The three-element elastic model appears to be the best one to represent the viscoelastic nature of the earth's material for a finite value ofQ.

Key words

Attenuation viscoelastic material rheological models complex modulus stored and dissipated energies Q 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bland, D. R.,The Theory of Linear Viscoelasticity (Pergamon Press, New York 1960).Google Scholar
  2. Bland, D. R., andLee, E. H. (1956),On the Determination of Viscoelastic Model for Stress Analysis of Plastics, J. Appl. Mech.23, 416.Google Scholar
  3. Gross, B.,Mathematical Structures of the Theories of Viscoelasticity, (Hermann et Cie, Paris 1953).Google Scholar
  4. Jaeger, J. C.,Elasticity, Fracture and Flow (Methuen and Co Ltd., London 1956).Google Scholar
  5. Kolsky, H.,Attenuation of Short Mechanical Pulses by High Polymers, Proc. 2nd Int. Congr. on Rheology, 77, (Butterworths, London 1954).Google Scholar
  6. Kolsky, H. (1956),The Propagation of Stress Pulses in Viscoelastic Solids, Phil Mag.8 (1), 693–710.Google Scholar
  7. Landau, L. D., andLifshitz, E. M.,Statistical Physics, Sec. 122, (Pergamon Press, London 1958).Google Scholar
  8. Leaderman, H., andMarvin, R. S. (1953),Dynamic Compliance, Dynamic Modulus, and Equivalent Voigt and Maxwell Models for Polyisobutylene, J. Appl. Physics24, 812–813.Google Scholar
  9. Liu, P. H., Anderson, D. L., andKanamori, H. (1976),Velocity Dispersion Due to Anelasticity; Implications for Seismology and Mantle Composition, Geophys. J. R. Astr. Soc.47, 41–58.Google Scholar
  10. Meidav, T.,Analysis of the Viscoelastic Properties of Some Rheological Models as Applied to Earth's Materials (Washington University, St. Louis, MO 1960).Google Scholar
  11. Meidav, T., (1964),Viscoelastic Properties of the Standard Linear Solid, Geophysical Prospecting12, 80–99.Google Scholar
  12. Nowick, A. S., andBerry, B. S.,Anelastic Relaxation in Crystalline Solids (Academic Press, New York 1972) p. 14.Google Scholar
  13. O'Connell, R. J., andBudiansky, B. (1978),Measures of Dissipation in Viscoelastic Media, Geophys. Research Letters,5, (1).Google Scholar
  14. Sperry, W. C. (1964),Rheological Model Concept J. Acoust. Soc. Am.36 (2), 376–385.Google Scholar
  15. Strike, E. (1967),The Determination of Q, Dynamic Viscosity and Transient Creep Curves from Wave Propagation Measurements Geophys. J. R. Astr. Soc.13, 197–218.Google Scholar
  16. Zener, C.,Elasticity and Anelasticity of Metals (University of Chicago Press, Chicago, Illinois 1948).Google Scholar

Copyright information

© Birkhäuser Verlag 1989

Authors and Affiliations

  • Mohammad Qausar
    • 1
  1. 1.MSSPPINSTECHRawalpindiPakistan

Personalised recommendations