Advertisement

pure and applied geophysics

, Volume 141, Issue 1, pp 1–24 | Cite as

Slant-stack velocity analysis for one-dimensional upper mantle structure using short-period data from MAJO

  • Nurcan Erdoĝan
  • Robert L. Nowack
Article

Abstract

In this paper, regionalP-wave upper mantle structure is investigated using slant-stack velocity analysis of short-period earthquake data recorded at station MAJO (Matsushiro, Japan). Shallow earthquakes from 1980–1986 within 35° of MAJO are used to construct a common receiver gather. Processing of the wavefield data includes focal depth and static time corrections, as well as deterministic deconvolution, in order to equalize pulse shapes and align wavelets on the first arrivals. The processed wavefield data are slant stacked and interatively downward continued to obtain a regional upper mantle velocity model. The model includes a low velocity zone between 107 and 220 km. Beneath the LVZ, the velocity increases smoothly down to the discontinuity at 401 km. In the transition zone, the velocity model again increases linearly, although there is some suggestion of further complexity in the downward continued wavefield data. At the base of the transition zone, a second velocity discontinuity occurs at 660 km, with a linear velocity gradient below. In addition to slant-stack analysis, travel times and synthetic seismograms are computed and compared with the processed and unprocessed wavefield data.

Key words

Slant-stack velocity analysis upper mantle structure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aki, K., andRichards, P.,Quantitative Seismology, Theory and Methods (W. H. Freeman, San Francisco 1980).Google Scholar
  2. Clayton, R. W. andMcMechan, G. A. (1981),Inversion of Refraction Data by Wavefield Continuation, Geophys.46, 860–868.Google Scholar
  3. Červený, V., andPšenčík, I.,SEIS83-Numerical modeling of seismic wavefields in 2-D laterally varying layered structures by the ray method. InDocumentation of Earthquake Algorithms (E. R. Engdahl, ed.) (USGS Report SE-35 1984) pp. 36–40.Google Scholar
  4. Cummins, P. R., Kennett, B. L. N., Bowman, J. R., andBostock, M. G. (1992),The 520 km Discontinuity?, Bull. Seismol. Soc. Am.82, 323–339.Google Scholar
  5. Diebold, J. B., andStoffa, P. L. (1981),The Travel Time Equation, Tau-P Mapping, and Inversion of Common Midpoint Data, Geophys.46, 238–254.Google Scholar
  6. Dziewonski, A. M. andAnderson, D. L. (1981),Preliminary Reference Earth Model, Phys. Earth Planet. Inter.25, 297–356.Google Scholar
  7. Fukao, Y. (1977),Upper Mantle P Structure on the Ocean Side of the Japan-Kurile Arc, Geophys. J. R. Astr. Soc.50, 621–642.Google Scholar
  8. Fukao, Y., Obayashi, M., Inoue, H., andNenbai, M. (1992),Subducting Slabs Stagnant in the Mantle Transition Zone, J. Geophys. Res.97, 4809–4822.Google Scholar
  9. Gerver, M. L., andMarkushevitch, V. (1966),Determination of a Seismic Wave Wave Velocity from the Travel Time Curbe, Geophys. J. R. Astr. Soc.11, 165–173.Google Scholar
  10. Gilbert, F., andDziewonski, A. M. (1975),An Application of Normal Mode Theory to the Retrieval of Structural Parameters and Source Mechanisms from Seismic Spectra, Phil. Trans. R. Soc. Lond.278, A 1280, 187–268.Google Scholar
  11. Herrin, E. (1968),Introduction to “1968 Seismological Tables for P Phases”, Bull. Seismol. Soc. Am.58, 1193–1241.Google Scholar
  12. Jones, L. E., Mori, J., andHelmberger, D. V. (1992),Short-period Constraints on the Proposed Transition Zone Discontinuity, J. Geophys. Res.97, 8765–8774.Google Scholar
  13. Revenaugh, J., andJordan, T. H. (1991a),Mantle Layering from ScS Reverberations, 1, Waveform Inversion of Zerovi Order Reverberations, J. Geophys. Res.96 (B12), 19,749–19,762.Google Scholar
  14. Revenaugh, J., andJordan, T. H. (1991b),Mantle Layering from ScS Reverberations, 2, The Transition Zone, J. Geophys. Res.96 (B12), 19,763–19,780.Google Scholar
  15. Revenaugh, J., andJordan, T. H. (1991c),Mantle Layering from ScS Reverberations, 3, The Upper Mantle, J. Geophys. Res.96, (B12), 19,781–19,810.Google Scholar
  16. Shearer, P. (1990),Seismic Imaging of Upper Mantle Structure with New Evidence for a 520 Discontinuity, Nature344, 121–126.Google Scholar
  17. Shearer, P. (1991),Constraints on Upper Mantle Discontinuities from Observations of Long Period Reflected and Converted Phases, J. Geophys. Res.96, 18,147–18,182.Google Scholar
  18. Shearer, P., andMasters, T. G. (1992),Global Mapping of Topography on the 660-km Discontinuity, Nature355, 791–796.Google Scholar
  19. Slichter, L. B. (1962),The Theory of the Interpretation of Seismic Travel Time Curves in Horizontal Structures, Physic3, 273–295.Google Scholar
  20. van der Hilst, R. D., Engdahl, R., Sakman, W., andNolet, G. (1991),Tomographic Imaging of Subducted Lithosphere Below Northwest Pacific Island Arcs Nature353, 37–43.Google Scholar
  21. Walck, M. C. (1985),The Upper Mantle Beneath the Northeast Pacific Rim: A Comparison with the Gulf of California, Geophys. J. R. Astr. Soc.81, 243–276.Google Scholar
  22. Walck, M. C., andClayton, R. W. (1984),Analysis of Upper Mantle Structure Using Wavefield Continuation of P Waves, Bull. Seismol. Soc. Am.74, 5,1703–5,1719.Google Scholar
  23. Yoshii, T., andAsano, S. (1972),Time-term Analysis of Explosion Seismic Data, J. Phys. Earth20, 47–57.Google Scholar
  24. Zhao, D., Horiuchi, S., andHasegawa, A. (1992),Seismic Velocity Structure of the Crust Beneath the Japan Islands, Tectonophysics212, 289–301.Google Scholar

Copyright information

© Birkhäuser Verlag 1993

Authors and Affiliations

  • Nurcan Erdoĝan
    • 1
  • Robert L. Nowack
    • 1
  1. 1.Department of Earth and Atmospheric SciencesPurdue UniversityWest LafayetteUSA

Personalised recommendations