pure and applied geophysics

, Volume 109, Issue 1, pp 1638–1652 | Cite as

Comparison of short- and long-periodP-wave travel times and arrival angles

  • R. J. Brown
  • M. A. Enayatollah


Using about 100 earthquakes recorded on both the short-period and long-period matched three-component seismograph systems at Umeå (UME) in northern Sweden, relativeP-wave travel times (LP-SP) are measured and arrival angles (incidence and azimuth) are determined from relative amplitudes ofP. Long-period onsets appear to register consistently later than short-period ones by a couple of tenths of a second. This figure is of the same order as the uncertainty in δT LS (difference between LP and SP onset times), but still is shown to be of some statistical significance. The effect is believed due, at least in part, to the relative inability of the long-period seismometer to visibly register an initial shorter-period lower-amplitude focal phase from some earthquakes.

The dip on crustal interfaces implied by the short-period azimuth and incidence-angle anomalies is 7 to 15 times greater than that implied by the long-period anomalies. This effect is believed due to undulation or irregularity of, foremost, the Moho, as well as other crustal boundaries. The ‘wavelength’ of, say, Moho undulations would seem to be limited above and below by considerations of the dominant long-period wavelengths (∼100 km) and of the ‘diameter’ of Moho sampled by the short-period waves (∼50 km). The possible ‘undesirable’ effect of the crustal layering on the components of surface motion, and thus on the arrival angles, is discussed and cautiously dismissed, due to the absence of sedimentary layering, in favour of the above interpretation.


Azimuth Focal Process Arrival Angle Seismograph Station Crustal Boundary 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    B. Akasche,Vergleichende Untersuchung des mechanischen Vorgangs in Erdbebenherden aus Aufzeichnungen kurzperiodischer und langperiodischer Seismographen, Doctoral dissertation, Naturwiss. Fak., Goethe Univ., Frankfurt am Main (1968), 154 pp.Google Scholar
  2. [2]
    M. Båth,Seismology in Sweden 1963–1967, Report pres. to Zurich IASPEI Assembly,in Comptes Rendus 15 bis of IASPEI (1967), 28 pp.Google Scholar
  3. [3]
    M. Båth,Average crustal structure of Sweden, Pure and Appl. Geophys.88 (1971), 75.CrossRefGoogle Scholar
  4. [4]
    P. Bormann,Statistische Untersuchungen zur Ortung teleseismischer Ereignisse aus Raumwellenregistrierungen der Station Moxa, Veröff. Zentralinst. Phys. Erde, Berlin, Nr. 9 (1971), 103 pp.Google Scholar
  5. [5]
    R. J. Brown,Lateral inhomogeneity in the crust and upper mantle from P-wave amplitudes, Pure and Appl. Geophys. (in press, 1972).Google Scholar
  6. [6]
    R. J. Brown,Azimuthally varying P-wave travel-time residuals in Fennoscandia and lateral inhomogeneity, Pure and Appl. Geophys. (in press, 1973).Google Scholar
  7. [7]
    R. J. Brown,Slowness and azimuth at the Uppsala array, part 2: structural studies, Pure and Appl. Geophys. (in press, 1973).Google Scholar
  8. [8]
    R. M. Clowes, E. R. Kanasewich andG. L. Cumming,Deep crustal seismic reflections at nearvertical incidence, Geophysics33 (1968), 441.CrossRefGoogle Scholar
  9. [9]
    R. J. W. Douglas,Summary of the geology of Canada, inThe Earth sciences in Canada, Earth-Sci. Rev.8 (1972), 81.Google Scholar
  10. [10]
    R. M. Ellis andP. W. Basham,Crustal characteristics from short-period P waves, Bull. Seism. Soc. Am.58 (1968) 1681.Google Scholar
  11. [11]
    M. A. Enayatollah,Travel times of P-waves for the Swedish-Finnish seismograph network, Pure and Appl. Geophys.94 (1972), 101.CrossRefGoogle Scholar
  12. [12]
    M. Ewing, S. Mueller, M. Landisman andY. Satô,Transient analysis of earthquake and explosion arrivals, Geofis. Pura e Appl.44 (1959), 83.CrossRefGoogle Scholar
  13. [13]
    R. A. Fisher,Statistical Methods for Research Workers, 11th edition (Oliver and Boyd Ltd., Edinburgh 1950), 354 pp.Google Scholar
  14. [14]
    W. I. Futterman,Dispersive body waves, J. Geophys. Res.67, (1962), 5279.CrossRefGoogle Scholar
  15. [15]
    B. Gutenberg,Physics of the Earth’s Interior (Academic Press, New York and London 1959), 240 pp.Google Scholar
  16. [16]
    D. H. Hall andZ. Hajnal,Crustal structure of northwestern Ontario: refraction seismology, Can. J. Earth Sci.6 (1969), 81.Google Scholar
  17. [17]
    H. S. Hasegawa,Crustal transfer ratios of short- and long-period body waves recorded at Yellow-knife, Bull. Seism. Soc. Am.61 (1971), 1303.Google Scholar
  18. [18]
    N. A. Haskell,Crustal reflection of plane P and SV waves, J. Geophys. Res.67 (1962), 4751.CrossRefGoogle Scholar
  19. [19]
    E. Herrin, E. P. Arnold, B. A. Bolt, G. E. Clawson, E. R. Engdahl, H. W. Freedman, D. W. Gordon, A. L. Hales, J. L. Lobdell, O. Nuttli, C. Romney J. Taggart andW. Tucker,1968 seismological tables for P phases, Bull. Seism. Soc. Am.58 (1968), 1193.Google Scholar
  20. [20]
    H. M. Iyer andJ. H. Healy,Teleseismic residuals at the LASA-USCGS extended array and their interpretation in terms of crust and upper mantle structure, J. Geophys. Res.77 (1972), 1503.CrossRefGoogle Scholar
  21. [21]
    H. Jeffreys andK. E. Bullen,Seismological Tables, Brit. Assoc. Adv. Sci., Gray Milne Trust, London (1967), 50 pp.Google Scholar
  22. [22]
    P. Mechler,Direct determination of the thickness of the Earth’s crust by travel time studies, Phys. Earth and Planet. Interiors2 (1969), 93.CrossRefGoogle Scholar
  23. [23]
    R. F. Mereu andG. Jobidon,A seismic investigation of the crust and Moho on a line perpendicular to the Grenville Front, Can. J. Earth Sci.8 (1971), 1553.Google Scholar
  24. [24]
    O. Nuttli,Some observations relating to the effect of the crust on long-period P-wave motion, Bull. Seism. Soc. Am.54 (1964), 141.Google Scholar
  25. [25]
    O. W. Nuttli,Table of angles of incidence of P waves at focus, calculated from 1968 P tables, Earthq. NotesXL 3 (1969), 21.Google Scholar
  26. [26]
    O. W. Nuttli andB. A. Bolt,P wave residuals as a function of azimuth 2. Undulations of the mantle low-velocity layer as an explanation, J. Geophys. Res.74 (1969), 6594.CrossRefGoogle Scholar
  27. [27]
    M. Otsuka,Azimuth and slowness anomalies of seismic waves measured on the central California seismographic array. Part II. Interpretation, Bull. Seism. Soc. Am.56 (1966), 655.Google Scholar
  28. [28]
    R. A. Phinney,Structure of the Earth’s crust from spectral behavior of long-period body waves, J. Geophys. Res.69 (1964), 2997.CrossRefGoogle Scholar
  29. [29]
    R. A. Phinney andS. W. Smith,Processing of seismic data from an automatic digital recorder, Bull. Seism. Soc. Am.53 (1963), 549.Google Scholar
  30. [30]
    A. M. Rogers, Jr., andC. Kisslinger,The effect of a dipping layer on P-wave transmission, Bull. Seism. Soc. Am.62, (1972), 301.Google Scholar
  31. [31]
    T. J. Smith, J. S. Steinhart andL. T. Aldrich,Lake Superior crustal structure, J. Geophys. Res.71 (1966), 1141.Google Scholar
  32. [32]
    M. R. Spiegel,Theory and Problems of Statistics (Schaum’s outline series) (McGraw-Hill Book Co., New York 1961), 359 pp.Google Scholar
  33. [33]
    W. Stauder,The Alaska earthquake of July 10, 1958: seismic studies, Bull. Seism. Soc. Am.50 (1960), 293.Google Scholar
  34. [34]
    S. Suyehiro,Pseudo dispersion in body waves and unusual region near northeast Japan, Papers in Meteorol. and Geophys.XXI (1970), 459.Google Scholar
  35. [35]
    T. Utsu,Variations in spectra of P waves recorded at Canadian Arctic seismograph stations, Can. J. Earth Sci.3 (1966), 597.Google Scholar
  36. [36]
    G. Willey, J. R. Cleary andP. D. Marshall,Comparison of least squares analyses of long and short period P wave amplitudes, Geophys. J. R. Astr. Soc.19 (1970), 439.Google Scholar

Copyright information

© Birkhäuser-Verlag 1973

Authors and Affiliations

  • R. J. Brown
    • 1
  • M. A. Enayatollah
    • 1
  1. 1.Seismological InstituteUppsala 1Sweden

Personalised recommendations