pure and applied geophysics

, Volume 77, Issue 1, pp 122–150 | Cite as

The lunar barometric tide, its global distribution and annual variation

  • B. Haurwitz
  • D. Cowley


The global distribution of the lunar barometric tideL2 is investigated by spherical harmonic analysis, based on 104 stations for the annual mean, and on 85 stations for the three seasons. The main wave ofL2 is the one with wave number 2, but for a detailed study of the irregularities of the global distribution ofL2, waves with other wave numbers have also to be considered. Even the main wave ofL2 is asymmetric to the equator with the two lunar-daily pressure maxima occurring earlier in the Southern than in the Northern Hemisphere. The amplitudes at the same distances from the equator are greater in the Southern than in the Northern Hemisphere. These hemispheric differences are most pronounced during the D season. As found in earlier investigations the phase consiant ofL2 is always greater during the J season than during the D season. But the amplitudes are greatest during the J season only north of 30oS. Farther south the amplitude maximum occurs during the D season.


Northern Hemisphere Harmonic Analysis Amplitude Maximum Pressure Maximum Annual Variation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R. Sawada, The atmospheric lunar tide, Meteorol. Papers2, 3 (New York University Press, 1954), 31 pp.Google Scholar
  2. [2]
    R. Sawada,The atmospheric lunar tides and the temperature profile in the upper atmosphere, Geophys. Mag.27 (1956), 213–236.Google Scholar
  3. [3]
    R. Sawada,The effect of zonal winds on the atmospheric lunar tide, Arch. Meteorol., Geophysik und Bioklimatologie [Ser. A]15 (1966), 129–167.Google Scholar
  4. [4]
    S. Chapman andK. C. Westfold,A comparison of the annual mean solar and lunar atmospheric tides in barometric pressure, as regards their worldwide distribution of amplitude and phase, Journ. Atmos. and Terr. Phys.8 (1956), 1–23.Google Scholar
  5. [5]
    S. Chapman andJ. Bartels,Geomagnetism, Vol. II (Clarendon Press, Oxford 1940), Chap. 20.Google Scholar
  6. [6]
    B. Haurwitz, The geographical distribution of the solar semidiurnal pressure oscillation, Meteorol. Papers2, 5 (New York University Press, 1956), 36 pp.Google Scholar
  7. [7]
    B. Haurwitz andGloria M. Sepúlveda,Geographical distribution of the semidiurnal pressure oscillation at different seasons, Journ. Meteorol. Soc. Japan, 75th Anniv. Vol. (1957), 149–155.Google Scholar
  8. [8]
    B. Haurwitz,The diurnal surface-pressure oscillation, Arch. Meteorol. Geophysik und Bioklimatologie [Ser. A]14 (1965), 361–379.Google Scholar
  9. [9]
    A. Schmidt,Tafeln der normierten Kugelfunktionen, sowie Formeln zur Entwicklung (Engelhard-Reyer, Gotha 1935), 52 pp.Google Scholar
  10. [10]
    S. L. Belousov (translated byD. E. Brown),Tables of Normalized Associated Legendre Polynomials (Pergamon Press; The MacMillan Co., New York 1962), 379 pp.Google Scholar
  11. [11]
    W. Kertz,Partialwellen in den halb- und vierteltäglichen gezeitenartigen Schwingungen der Atmosphäre, Arch. Meteorol., Geophysik und Bioklimatologie [Ser. A]11 (1959), 48–63.Google Scholar
  12. [12]
    W. Kertz,Theorie der gezeitenartigen Schwingungen als Eigenwertproblem, Ann. Meteorol.4 (1957), Beiheft 1.Google Scholar
  13. [13]
    R. Sawada,The possible effect of oceans on the atmospheric lunar tide, Journ. Atmos. Sci.22 (1965), 636–643.Google Scholar
  14. [14]
    T. W. Flattery,Hough functions, Tech. Rep. No. 21 to Nat. Sci. Found. (Grant NSF-GP-471), Dept. Geophys. Sci. U. of Chicago (1967).Google Scholar
  15. [15]
    R. Sawada andB. Haurwitz,The lunar air tide, Ann. Geophysique11 (1965), 145–147.Google Scholar
  16. [16]
    M. Siebert,Atmospheric Tides inAdvances in Geophysics,H. E. Landsberg andJ. V. Mieghem, Ed., Vol. 7 (Academic Press, New York, London 1961).Google Scholar
  17. [17]
    S. Chapman,The lunar diurnal variation of atmospheric temperature at Batavia, 1866–1928, Proc. Roy. Soc. [A]137 (1932), 1–24.Google Scholar
  18. [18]
    S. Chapman,On the theory of the lunar tidal variation of atmospheric temperature, Roy. Met. Soc. Mem. IV,34 (1932), 34–40.Google Scholar

Copyright information

© Birkhäuser Verlag 1969

Authors and Affiliations

  • B. Haurwitz
  • D. Cowley
    • 1
  1. 1.National Center for Atmospheric ResearchBoulderUSA

Personalised recommendations