Advertisement

pure and applied geophysics

, Volume 77, Issue 1, pp 78–88 | Cite as

Investigation of the initial condensation stage of cloud formation in the chamber

  • A. G. Laktionov
  • O. A. Volkovitsky
Article

Summary

The experimental results on the initial condensation stage simulating droplet spectrum formation in the 3200 m3 volume chamber are presented. In the chamber the air was cooled at the velocities corresponding to those of the upstreamu z ≈15–120 cm/s. From the measurements of condensation nuclei-supersaturation spectra and the droplet concentrationN of the developing fog at givenu z maximum supersaturation valuesδ max , which do not exceed 1·10−3 atu z ≈15 cm/s and 6·10−3 atu z ≈100 cm/s, are estimated. The experimental valuesN andδ max are compared with the computed ones on the basis of regular condensation theory at the initial stage of cloud formation, when the droplet diffusion growth is considered. Experimental valuesN andδ max appeared to be greater than the computed ones. The experimentally obtained dependencesN (u z ) andδ max N (u z ) are approximated satisfactorily by degree functions, but exponents proved to be greater than it follows from the known theoretical presentations.

анномачуuи

в статБе описБьвается методика и приводятся резулБтатБь зкспериментов ио моделированию началБной конденсационной стадии формирования обначното спектр¶ в камере обБемом 3200 м3. Охнаждение возцуха в камере проводилосБ со скоростями, соответствуюшими скоростями восходяшего потокаu z ≈15–120 см/сек. Из измерений спектров ядер конденсации по пересБьщениям и измерений концентрацнн ядер формирющегося туманаN при задаииБьхu z оцененБь уеличинБьх пересБьщенийδ max , которБье не превБпбают. 10−3 бриu z ≈15 см/сек и 6·10−3 приu z ≈100 см/сек.

ЭксперименталБно найденнБье значенияNδ max сравненБь с рассчитаннБьми. Дня расчетов испонБзованБь даннбье теории начанБной стадии конденсации в обнаках, учитБьвающей дтффузионнБьй рост капенБ (уравнепие Максвена).

ЭкспэриментанБно понученнБье значэнияN иδ max оказалисБ волБшими, чем расчефнБье. НайненнБье зксперименталБно зависимостиN (u z ) иδ max (u z ) удовлетворитенБно аппроксимируются. степеннБьми функциями, однако, показатели степениu z оказанисБ болБшими, чем зто следует из издестнБьхтеоретпческих представлений

Keywords

Supersaturation Volume Chamber Cloud Formation Diffusion Growth Degree Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    L. G. Akuljshina, V. N. Arefjev, N. K. Nikiforova andG. I. Shchelchkov,Fotoelektritcheskij pribor dlja izmerenija spektra i kontsentratsii zhidkikh chastits aerosolja, Tr. IPG, No. 7 (1967).Google Scholar
  2. [2]
    E. L. Aleksandrov, L. M. Levin andY. S. Sedunov, Kondensatsionny rost kapelj rastvora, Izv. AN SSSR, ser. FAiOIII, No. 8 (1967).Google Scholar
  3. [3]
    A. H. Auer, A cumulus cloud design for continental air mass regimes, J. Rech. Atm.III, No. 3 (1967).Google Scholar
  4. [4]
    M. V. Bujkov, Kinetica geterogennoj kondensatsii pri adiabaticheskom okhlazdenii, Kolloidny zhurnalXXVIII, No. 2, No. 5 (1966).Google Scholar
  5. [5]
    W. E. Howell, The growth of cloud drops in uniformly cooled air, J. Met.6, No. 2 (1949).Google Scholar
  6. [6]
    L. G. Katchurin, L. E. Alantjeva andSya Jui-Zhenj,Kontsentratsija para i skorostj rosta kapelj kondensata v vodnykh aerosoljakh, Izv. AN SSSR, ser. geofiz., No. 9 (1961).Google Scholar
  7. [7]
    A. G. Laktionov, Photoelectric measurements of condensation cloud nuclei, J. Rech. Atm. IV, No. 1–2 (1968).Google Scholar
  8. [8]
    L. M. Levin andYu. S. Sedunov,The theoretical model of the drop spectrum formation process in clouds, Pageoph69 (1968/I), 320–335.Google Scholar
  9. [9]
    W. Mordy, Computation of the growth by condensation population of cloud droplets, Tellus11, No. 1 (1959).Google Scholar
  10. [10]
    M. Neiburger andO. W. Chin,Computations of the growth of cloud drops by condensation using an electronic degital computer. Physics of precipitation, Geophys. Monograph, No. 5 (Waverly Press, Baltimore 1960).Google Scholar
  11. [11]
    Yu. S. Sedunov, Kinetica nachaljnoi stadii kondensatsii v oblakakh, Izv. AN SSSR, ser. FAiO,III, No. 1 (1967).Google Scholar
  12. [12]
    Yu. S. Sedunov,Kinetica formirovanija oblachnogo spectra (Doktorskaja dissertatsija), Obnisk (1967).Google Scholar
  13. [13]
    P. Squires andS. Twomey,The relation between cloud droplet spectra and the spectrum of cloud nuclei. Physics of precipitation, Geophys. Monograph, No. 5 (Waverly Press, Baltimore 1960).Google Scholar
  14. [14]
    S. Twomey,The nuclei of natural cloud formation. Part II: The supersaturation in natural clouds and the variation of cloud droplet concentration, Geoph. pura e appl.43 (1959), 243–249.Google Scholar
  15. [15]
    S. Twomey andJ. Warner, Computation of measurements of cloud droplets and cloud nuclei, J. Atm. Sci.24, No. 6 (1967).Google Scholar
  16. [16]
    E. Uchida, A preliminary study a slow expansion chamber, J. Met. Soc., Japan42, No. 2 (1964).Google Scholar
  17. [17]
    O. A. Volkovitsky,Kompleks eksperimentalnyh ustanovok dlja geofisceskikh issledovanii, Meteorologija i gidrologija, No. 6 (1965).Google Scholar
  18. [18]
    O. A. Volkovitsky, L. I. Ermoshina andYu. S. Sedunov,Otsenka koeffitsienta turbulentnoi diffuzii v aerosolnoj kamere, Tr. IPG, No. 7 (1967).Google Scholar

Copyright information

© Birkhäuser Verlag 1969

Authors and Affiliations

  • A. G. Laktionov
    • 1
  • O. A. Volkovitsky
    • 2
  1. 1.Institute of Applied GeophysicsMoscowUSSR
  2. 2.Institute of Experimental MeteorologyObninskUSSR

Personalised recommendations