pure and applied geophysics

, Volume 97, Issue 1, pp 100–110 | Cite as

On the dynamic response of an infinite Bernoulli-Euler beam

  • John P. Sheehan
  • Lokenath Debnath


This paper presents a theory of the transient Bernoulli-Euler beam problem on an elastic foundation which takes into account the effects of axial load and linear damping. An analytical solution of the steady state and the transient components has been obtained due to physically realistic load distributions. With a view to extend its practical applicability, the characteristic features of the solution are explored. Several limiting situations are investigated as special cases. It is shown that the steady state vibration can be achieved as the limit of the solution of the transient problem.


Steady State Characteristic Feature Dynamic Response Axial Load Load Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. B. J. Fourier,Note Relative aux Vibrations des Surfaces Élastiques et un Mouvement des Ondes, Bulletin des Sciences par la Société Philomatique de Paris (1818), pp. 129–136.Google Scholar
  2. [2]
    J. V. Boussinesq,Applications des Potentials à l'Étude de l'Équilibre de Mouvement des Solids Elastiques (Gauthier Villars, Paris, 1855).Google Scholar
  3. [3]
    W. Prager, Ing-Arch.4 (1933), 16–29.Google Scholar
  4. [4]
    K. Ludwig, Proc. 5th Int. Congress Appl. Mech. (1938), pp. 650–655.Google Scholar
  5. [5]
    J. Dörr, Ing-Arch.14, (1943), 167–192.Google Scholar
  6. [6]
    J. Kenney, J. Appl. Mech.21, (1954), 359–364.Google Scholar
  7. [7]
    P. M. Mathews, Z. Angew. Math. Mech.38 (1958).Google Scholar
  8. [8]
    R. D. Gregory, Proc. Camb. Phil. Soc.62 (1966), 811–827.Google Scholar
  9. [9]
    W. Nowacki,Dynamics of Elastic Systems (John Wiley, 1963).Google Scholar
  10. [10]
    J. J. Stoker,Water Waves (Interscience, 1957).Google Scholar
  11. [11]
    L. Debnath,On Transient Development of Surface Waves, Z. Angew. Math. Phys.19 (1968), 948–961.Google Scholar
  12. [12]
    W. Stadler andR. W. Shreeves,The Transient and Steady-State Response of the Infinite Bernoulli-Euler Beam with Damping and an Elastic Foundation, Quart. J. Mech. and Appl. Math.XXII (1970), 197–208.Google Scholar
  13. [13]
    I. N. Sneddon,Fourier Transforms (McGraw Hill, 1951).Google Scholar
  14. [14]
    A. Erdélyi,Tables of Integral Transforms, Vol. I (McGraw Hill, 1954).Google Scholar

Copyright information

© Birkhäuser Verlag 1972

Authors and Affiliations

  • John P. Sheehan
  • Lokenath Debnath
    • 1
  1. 1.Mathematics DepartmentEast Carolina UniversityGreenvilleU.S.A.

Personalised recommendations