Skip to main content
Log in

Electrofreezing of supercooled water

  • Published:
pure and applied geophysics Aims and scope Submit manuscript

Summary

The results of a wind tunnel and could chamber investigation on the effect of intense electric fields on ice-nucleation in supercooled water are presented. It is found that electrostatically charged surfaces and externally applied electric fields significantly enhance ice-nucleation. This finding is supported by a review of recent work reported in literature. Several mechanisms are considered which can be made responsible for electrofreezing. A discussion of the electrofreezing effect suggests that it is the electrical relief of the surface of a solid substrate rather than the crystallochemical relief which is the determining factor in heterogeneous ice nucleus formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. J. Mason,The physics of Cloud (Oxford University Press, London, 1972).

    Google Scholar 

  2. H. R. Pruppacher andM. Neiburger,Design and performance of the UCLA cloud tunnel, Proc. Int. Conf. Cloud Physics, Toronto (1968), 389–392.

  3. K. V. Beard andH. R. Pruppacher,A determination of the terminal velocity and drag of small water drops by means of a wind tunnel, J. Atmos. Sci.26 (1969), 1066–1072.

    Google Scholar 

  4. K. V. Beard andH. R. Pruppacher,A wind tunnel investigation of the rate of evaporation of small water drops falling at terminal velocity in air, J. Atmos. Sci.28 (1971), 1455–1464.

    Google Scholar 

  5. L. Dufour,Über das Gefrieren des Wassers und über die Bildung des Hagels, Poggendorfs Ann. Physik114 (1861), 530–554.

    Google Scholar 

  6. W. Rau,Eiskeimbildung durch dielektrische Polarisation, Z.f. Naturforsch.6a (1951), 649–457.

    Google Scholar 

  7. V. J. Schaefer,Project Cirrus, Gen. Electric Res. Lab. Final Rept. (1953), 52.

  8. R. W. Salt,Effect of electrostatic field on freezing of supercooled water and insects, Science133 (1961), 458.

    Google Scholar 

  9. H. R. Pruppacher,The effect of an external electric field on the supercooling of water drops, J. Geophys. Res.68 (1963), 4463–4474.

    Google Scholar 

  10. H. R. Pruppacher,The effects of electric fields on cloud physical processes, J. Appl. Math. and Phys. (ZAMP)14 (1963), 590–599.

    Google Scholar 

  11. M. Roulleau,Influence of an electric field on the freezing of water, Ann. Geophys.20 (1964), 319–324.

    Google Scholar 

  12. M. Roulleau andM. Poc,Électrocongélation des brouillards surfondus, Compte. Rend.264 (1967), 1480–1483.

    Google Scholar 

  13. M. Poc,Électrocongélation des brouillards surfondus, J. de Rech. Atmos.3 (1967), 127–137.

    Google Scholar 

  14. C. Garraud,Rôle du givrage des électrodes dan l'électrocongélation des brouillards surfondus, Compte Rend.268 (1969), 1042–1044.

    Google Scholar 

  15. V. J. Schaefer,The generation of large numbers of ice crystals in an electric field, J. Appl. Meteorol.7 (1968), 452–455.

    Google Scholar 

  16. M. Roulleau, L. F. Evans andN. Fukuta,The electrical nucleation of ice in supercooled clouds, J. Atmos. Sci.28 (1971), 737–740.

    Google Scholar 

  17. M. A. Abbas andJ. Latham,The electrofreezing of supercooled water drops, J. Meteorol. Soc. Japan47 (1969), 65–74.

    Google Scholar 

  18. M. H. Smith, R. F. Griffiths andJ. Latham,The freezing of raindrops falling through strong electric fields, Quart. J. Roy. Meteorol. Soc.97 (1971), 495–505.

    Google Scholar 

  19. L. R. Koenig,Drop freezing through drop breakup, J. Atmos. Sci.22 (1965), 448–451.

    Google Scholar 

  20. T. G. Gabarashvili andN. V. Gliki,Origination of the ice phase in supercooled water under the influence of electrically charged crystals, Izvestiya Acad. Sci. USSR Atmospheric and Oceanic Physics3 (1967), 570–574.

    Google Scholar 

  21. F. Albani,Sur l'action glacogène de l'étincelle électrique sur les images surfondus, Bull. Obs. Puy de Dôme No. 1 (1965), 7–10.

    Google Scholar 

  22. D. C. Blanchard,Electrostatic field and freezing, Science133 (1961), 1678.

    Google Scholar 

  23. L. B. Loeb,A tentative explanation of the electric field effect on the freezing of supercooled water drops, J. Geophys. Res.68 (1963), 4475.

    Google Scholar 

  24. L. B. Loeb, A. F. Kip andA. W. Einarsson,On the nature of ionic sign preference in Wilson Cloud Chamber condensation experiments, J. Chem. Phys.6 (1938), 264–273.

    Google Scholar 

  25. A. Rahman andF. H. Stillinger,Molecular dynamics study of liquid water, J. Chem. Phys.55 (1971), 3336–3359.

    Google Scholar 

  26. L. Dufour andR. Defay,Thermodynamics of Clouds (Akademic Press, New York, 1963).

    Google Scholar 

  27. L. F. Evans,The role of the adsorbed layer in ice nucleation, Proc. Conf. Cloud Physics, Fort Collins (1970), 14.

  28. G. Nemethy andH. A. Scheraga,Structure of water and hydrophobic bonding in proteins, J. Chem. Phys.36 (1962), 3401–3417.

    Google Scholar 

  29. H. H. Jellinek, M. D. Luh, andV. Nagarajan,Sorbed water on polymers near 0°C, Koll. Z. und Z. f. Polymere232 (1969), 758–763.

    Google Scholar 

  30. N. R. Gokhale,Dependence of ice nucleating efficiencies of chemical aerosols in a supercooled cloud and bulk water, Proc. Int. Conf. on Cloud Physics, Tokyo (1965), 176–180.

  31. T. E. Hoffer,A laboratory investigation of droplet freezing, J. of Meteorol.18 (1961), 766–778.

    Google Scholar 

  32. N. R. Gokhale andJ. D. Spengler,Freezing of freely suspended, supercooled water drops by contact nucleation, J. Appl. Meteorol.11 (1972), 157–160.

    Google Scholar 

  33. N. Gokhale andJ. Goold,Droplet freezing by surface nucleation, J. Appl. Meteorol.7 (1968), 870–874.

    Google Scholar 

  34. J. Latham,The electrification of snowstorms and sandstorms, Quart. J. Roy. Meteorol. Soc.90 (1964), 91–95.

    Google Scholar 

  35. K. L. Chopra,Growth of thin metal films under applied electric field, Appl. Phys. Letters7 (1965), 140–142.

    Google Scholar 

  36. K. L. Chopra,Influence of electric field on the growth of thin metal films, J. Appl. Phys.37 (1966), 2249–2254.

    Google Scholar 

  37. K. Mihana andM. Tanaka,An electrostatic field effect in the epitaxial growth of gold particles evaporated onto sodium chloride, J. Crystal Growth2 (1968), 51–53.

    Google Scholar 

  38. V. P. Vlasov, Y. M. Gerasimov andG. I. Distler,Electrical relief of the surface of a crystal substrate as the determining factor in nucleus formation and growth, Soviet Physics, Crystallography15 (1970), 289–293.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by the National Science Foundation under grant No. GA-32814

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pruppacher, H.R. Electrofreezing of supercooled water. PAGEOPH 104, 623–634 (1973). https://doi.org/10.1007/BF00875907

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00875907

Keywords

Navigation