pure and applied geophysics

, Volume 124, Issue 1–2, pp 159–175 | Cite as

Brecciation processes in fault zones: Inferences from earthquake rupturing

  • Richard H. Sibson
Article

Abstract

Surface-rupture patterns and aftershock distributions accompanying moderate to large shallow earthquakes reveal a residual brittle infrastructure for established crustal fault zones, the complexity of which is likely to be largely scale-invariant. In relation to such an infrastructure, continued displacement along a particular master fault may involve three dominant mechanical processes of rock brecciation: (a)attrition brecciation, from progressive frictional wear along principal slip surfaces during both seismic and aseismic sliding, (b)distributed crush brecciation, involving microfracturing over broad regions when slip on the principal slip surfaces is impeded by antidilational jogs or other obstructions, and (c)implosion brecciation, associated with the sudden creation of void space and fluid-pressure differentials at dilational fault jogs during earthquake rupture propagation. These last, high-dilation breccias are particularly favorable sites for hydrothermal mineral deposition, forming transitory low-pressure channels for the rapid passage of hydrothermal fluids. Long-lived fault zones often contain an intermingling of breccias derived from all three processes.

Key words

Breccias faults earthquakes mineralization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aydin, A. andJohnson, A. M. (1978),Development of faults as zones of deformation bands and as slip surfaces in sandstone. Pure Appl. Geophys.116, 931–942.Google Scholar
  2. Booker, J. (1974),Time-dependent strain following faulting of a porous medium. J. Geophys. Res.79, 2037–2043.Google Scholar
  3. Bouchon, M. (1982),The rupture mechanism of the Coyote Lake earthquake of 6 August 1979 inferred from near-field data. Bull. Seism. Soc. Am.72, 745–757.Google Scholar
  4. Brock, W. G. andEngelder, J. T. (1977),Deformation associated with the movement of the Muddy Mountain overthrust in the Buffington window, southeastern Nevada. Geol. Soc. Am. Bull.88, 1667–1677.Google Scholar
  5. Burdick, L. J. andMellman, G. R. (1976),Inversion of body waves from Borrego Mountain earthquake to the source mechanism. Bull. Seism. Soc. Am.66, 1485–1499.Google Scholar
  6. Byerlee, J., Mjachkin, V., Summers, R. andVoevoda, O. (1978),Structures developed in fault gouge during stable sliding and stick-slip. Tectonophys.44, 161–171.Google Scholar
  7. Chester, F. M., Friedman, M., andLogan, J. M. (1985),Foliated cataclasite. Tectonophys.111, 134–146.Google Scholar
  8. Clark, M. M. (1972),Surface rupture along the Coyote Creek fault. U.S. Geol. Surv. Prof. Paper787, 55–86.Google Scholar
  9. Crowell, J. C. (1974),Origin of Late Cenozoic basins in southern California. Soc. Econ. Pal. Mineral. Spec. Publ.22, 190–203.Google Scholar
  10. Das, S. andScholz, C. H. (1981),Off-fault aftershock clusters caused by shear stress increase. Bull. Seism. Soc. Am.71, 1669–1675.Google Scholar
  11. Davis, G. A., Anderson, J. L., Frost, E. G. andShackelford, T. J. (1980),Mylonitization and detachment faulting in the Whipple-Buckskin-Rawhide Mountains terrane, southeastern California and western Arizona. Geol. Soc. Am. Mem.153, 79–129.Google Scholar
  12. Eaton, J. P., O'Neill, M. E., andMurdock, J. N. (1970),Aftershocks of the 1966 Parkfield-Chola California, earthquake: A detailed study. Bull. Seism. Soc. Am.60, 1151–1197.Google Scholar
  13. Ebel, J. E. andHelmberger, D. V. (1982),P-wave complexity and fault asperities: The Borrego Mountain, California, earthquake of 1968. Bull. Seism. Soc. Am.72, 413–437.Google Scholar
  14. Engelder, J. T. (1974),Cataclasis and the generation of fault gouge. Geol. Soc. Am. Bull.85, 1515–1522.Google Scholar
  15. Engelder, J. T. (1978),Aspects of asperity-surface interaction and surface damage of rocks during experimental frictional sliding. Pure Appl. Geophys.116, 705–716.Google Scholar
  16. Engelder, J. T., Logan, J. M., andHandin, J. (1975),The sliding characteristics of sandstone on quartz fault-gouge. Pure Appl. Geophys.113, 69–86.Google Scholar
  17. Etheridge, M. (1983),Differential stress magnitudes during regional deformation and metamorphism: Upper bound imposed by tensile fracturing. Geology11, 231–234.Google Scholar
  18. Flinn, D. (1977),Transcurrent faults and associated cataclasis in Shetland. J. Geol. Soc. Lond.133, 231–248.Google Scholar
  19. Gamond, J. F. (1983),Displacement features associated with fault zones: A comparison between observed examples and experimental models. J. Struct. Geol.5, 33–46.Google Scholar
  20. Gay, N. C. andOrtlepp, W. D. (1979),Anatomy of a mining-induced fault zone. Geol. Soc. Am. Bull.90, 47–58.Google Scholar
  21. Grocott, J. (1981),Fracture geometry of pseudotachylyte generation zones: A study of shear fractures formed during seismic events. J. Struct. Geol.3, 169–178.Google Scholar
  22. Hamilton, R. M. (1972),Aftershocks of the Borrego Mountain earthquake from April 12 to June 12, 1968. U.S. Geol. Surv. Prof. Paper787, 31–54.Google Scholar
  23. Hill, D. P. (1977),A model for earthquake swarms. J. Geophys. Res.82, 1347–1352.Google Scholar
  24. House, W. M. andGray, D. R. (1982),Cataclasites along the Saltville thrust, U.S.A., and their implications for thrust-sheet emplacement. j. Struct. Geol.4, 257–269.Google Scholar
  25. Hulin, C. D. (1929),Structural control of ore deposition. Econ. Geol.24, 15–49.Google Scholar
  26. Jackson, R. E. andDunn, D. E. (1974),Experimental sliding friction and cataclasis of foliated rocks. Int. J. Rock Mech. Min. Sci.14, 235–249.Google Scholar
  27. King, G. C. P. (1983),The accommodation of large strains in the upper lithosphere of the earth and other solids by self-similar fault systems: The geometrical origin of b-value. Pure Appl. Geophys.121, 762–815.Google Scholar
  28. Liu, H.-L. andHelmberger, D. V. (1983),The near-source ground motion of the 6 August 1979 Coyote Lake, California, earthquake. Bull. Seism. Soc. Am.73, 201–218.Google Scholar
  29. Masson, H. (1972),Sur l'origine de la cornieule par fracturation hydraulique. Eclogae geol. Helv.65, 27–41.Google Scholar
  30. McKibben, M. A. andElders, W. A. (1985),Fe−Zn−Cu−Pb mineralization in the Salton Sea geothermal system, Imperial Valley, California. Econ. Geol.80, 539–559.Google Scholar
  31. McKinstry, H. E.,Mining Geology. Prentice-Hall, New Jersey, 1948, 677 pp.Google Scholar
  32. Mitcham, T. W. (1974),Origin of breccia pipes. Econ. Geol.69, 412–413.Google Scholar
  33. Moore, H. E. andSibson, R. H. (1978),Experimental thermal fragmentation in relation to seismic faulting. Tectonophys.49, T9–T17.Google Scholar
  34. Muraoka, H. andKamata, H. (1983),Displacement distributions along minor fault traces. J. Struct. Geol.5, 483–495.Google Scholar
  35. Newhouse, W. H.,Ore Deposits as Related to Structural Features. Princeton Univ. Press, New Jersey, 1942, 280 pp.Google Scholar
  36. Nur, A., andBooker, J. (1972),Aftershocks caused by pore fluid flow?. Science175, 885–887.Google Scholar
  37. Paterson, M. S.,Experimental Rock Deformation — The Brittle Field. Springer-Verlag, Berlin, 1978, 254 pp.Google Scholar
  38. Phillips, W. J. (1972),Hydraulic fracturing and mineralization. J. Geol. Soc. Lond.128, 337–359.Google Scholar
  39. Reasenberg, P. andEllsworth, W. L. (1982),Aftershocks of the Coyote Lake, California, earthquake of August 6, 1979: A detailed study. J. Geophys. Res.87, 10, 637–10, 665.Google Scholar
  40. Redwine, L (1981),Hypothesis containing dilation, natural hydraulic fracturing and dolomitisation to explain petroleum reservoirs in Monterey Shale, Santa Maria area, California, inThe Monterey Formation and Related Siliceous Rocks of California. R. E. Garrison, R. G. Douglas, K. E. Pisciotto, C. M. Isaacs and J. C. Ingle (eds.), Spec. Publ. Soc. Econ. Pal. Mineral., Los Angeles, p. 221–248.Google Scholar
  41. Robertson, E. C. (1982),Continuous formation of gouge and breccia during fault displacement, inIssues in Rock Mechanics. Proc. 23rd Symp. Rock Mechanics, R. E. Goodman and F. E. Heuse (eds.), Am. Inst. Mining Metall. Petrol. Eng., New York, 397–403.Google Scholar
  42. Roehl, P. O. (1981), ‘Dilation brecciation —A proposed mechanism of fracturing, petroleum expulsion and dolomitization in the Monterey Formation, California’, inThe Monterey Formation and Related Siliceous Rocks of California. R. E. Garrison, R. G. Douglas, K. E. Pisciotto, C. M. Isaaca, and J. C. Ingle (eds.), Spec. Publ. Soc. Econ. Pal. Mineral., Los Angeles, p. 285–315.Google Scholar
  43. Segall, P. andPollard, D. D. (1980),Mechanics of discontinuous faulting. J. Geophys. Res.85, 4337–4350.Google Scholar
  44. Segall, P. andPollard, D. D. (1983),Nucleation and growth of strike-slip faults in granite. J. Geophys. Res.88, 555–568.Google Scholar
  45. Sharp, W. E. (1965),The deposition of hydrothermal quartz and calcite. Econ. Geol.60, 1635–1644.Google Scholar
  46. Sibson, R. H. (1975),Generation of pseudotachylyte by ancient seismic faulting. Geophys. J. R. Astr. Soc.43, 775–794.Google Scholar
  47. Sibson, R. H. (1977),Fault rocks and fault mechanisms. J. Geol. Soc. Lond.133, 191–213.Google Scholar
  48. Sibson, R. H. (1983),Continental fault structure and the shallow earthquake source. J. Geol. Soc. Lond.140, 741–767.Google Scholar
  49. Sibson, R. H. (1985),Stopping of earthquake ruptures at dilational fault jogs. Nature316, 248–251.Google Scholar
  50. Sibson, R. H. (1986),Rupture interaction with fault jogs, inEarthquake Source Mechanics. S. Das, J. Boatwright and C. H. Scholz (eds.), Maurice Ewing Ser. 6, Am. Geophys. Union Mon. 37, 157–168.Google Scholar
  51. Sieh, K. E. (1978),Slip along the San Andreas fault associated with the great 1857 earthquake. Bull. Seism. Soc. Am.68, 1421–1448.Google Scholar
  52. Spurr, J. E. (1925),The Camp Bird compound veindike. Econ. Geol.20, 115–152.Google Scholar
  53. Tchalenko, J. S. (1970),Similarities between shear zones of different magnitudes. Geol. Soc. Am. Bull.81, 1625–1640.Google Scholar
  54. Tchalenko, J. S. andBerberian, M. (1975),Dasht-e Bayaz Fault, Iran: Earthquake and earlier related structures in bed rock. Geol. Soc. Am. Bull.86, 703–709.Google Scholar
  55. Toulmin, P. andClark, S. P. (1979),Thermal aspects of ore formation, inGeochemistry of Hydrothermal Ore Deposits. H. L. Barnes (ed.), Holt, Rinehart, New York, 437–464.Google Scholar
  56. Vedder, J. G. andWallace, R. E. (1970),Map showing recently active fault breaks along the San Andreas and related faults between Cholame Valley and Tejon Pass, California. U.S. Geol. Surv. Misc. Invest. Map I-574, scale 1∶24,000.Google Scholar
  57. Wilkins, J. andHeidrick, T. L. (1982),Base and precious metal mineralization related to low-angle tectonic features in the Whipple Mountains, California, and Buckskin Mountains, Arizona, inMesozoic-Cenozoic Tectonic Evolution of the Colorado River Region, California, Arizona and Nevada. E. G. Forst and D. L. Martin (eds.), Cordilleran Publishers, San Diego, p. 182–203.Google Scholar

Copyright information

© Birkhäuser Verlag 1986

Authors and Affiliations

  • Richard H. Sibson
    • 1
  1. 1.Department of Geological SciencesUniversity of CaliforniaSanta Barbara

Personalised recommendations