Skip to main content
Log in

Light scattering constants for a water cloud

  • Published:
pure and applied geophysics Aims and scope Submit manuscript

Summary

The study of radiative transfer in clouds and fog requires a knowledge of basic radiation constants. For this purpose the volume extinction, scattering, and absorption coefficients, the maximum absorption coefficients for composite spectral lines, and the coefficients used to expand the phase function into a series of Legendre polynomials for analytic representation of the phase function are provided in tabular and graphical format. The analysis for cloud droplets is based upon the rigorous electromagnetic theory. All Mie computations are carried out in an exact manner avoiding any approximations. Absorption line constants as computed here are based upon the investigations ofElsasser withCulbertson [5]3) andWyatt, Stull, andPlass [18]. Tabulations are made on the basis of fifty spectral intervals covering the entire solar and infrared spectra. Polarization effects are disregarded in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. C. Best, 1951:Drop-size distribution in cloud and fog, Quarterly Journal of the Royal Meteorological Society77, 418.

    Google Scholar 

  2. S. Chandrasekhar,Radiation Transfer (Dover Publications Inc., New York, N.Y. 1960).

    Google Scholar 

  3. D. Deirmendijan,Theory of the solar aureole, Annales de Geophysique15 (2) (1959), 218–249.

    Google Scholar 

  4. D. Deirmendijan,Scattering and polarization properties of water clouds and hazes in the visible and infrared, Applied Optics3, 2 (1964), 187–196.

    Google Scholar 

  5. Walter M. Elsasser withMargaret F. Culbertson,Atmospheric Radiation Tables, Meterological Monographs4 (1960), 23.

    Google Scholar 

  6. J. B. Havard,On the radiational characteristics of water clouds at infrared, wave lengths, Ph.D. Thesis, University of Washington (1960).

  7. B. M. Herman,Infrared absorption, scattering, and total attenuation cross-sections for water spheres, Quarterly Journal of the Royal Meteorological Society88, No. 376 (1962), 143–150.

    Google Scholar 

  8. J. N. Howard, D. E. Burch andD. Williams,Infrared transmission of synthetic atmospheres, Journal of the Optical Society of America46 (1956), 186, 237, 242, 334, 452.

    Google Scholar 

  9. William M. Irvine andJ. B. Pollack,Infrared properties of water and ice spheres, Unpublished report, Smithsonian Astrophysical Observatory, Cambridge, Massachusetts (1966).

    Google Scholar 

  10. Linkes Meteorologisches Taschenbuch, II (Franz Baur, Leipzig, Germany, Akademische Verlags-gesellschaft Geest and Portig K.-G., 1953).

  11. J. E. McDonald,Absorption of atmospheric radiation by water films and water clouds, Journal of Meteorology17 (1960), 232–238.

    Google Scholar 

  12. Fritz Möller,Das Strahlungsdiagramm, Wissenschaftliche Abhandlungen des Deutschen Reiches, Wetterdienst (1943).

  13. F. Möller andE. Raschke,Evaluation of Tiros III radiation data, NASA Research Grant NSG-305, Interim Report No. 1 (1963).

  14. C. H. Palmer, Jr.,Experimental transmission functions for the pure rotation band of water vapor, Journal of the Optical Society of America50 (1960) 1232.

    Google Scholar 

  15. R. Penndorf andB. Goldberg,New tables of Mie scattering functions for spherical particles, Part 4, Geophysical Research Papers No. 45, AFCRC-TR-56-204, Geophysics Research Directorate, Air Force Cambridge Research Center, ASTIA Document No. AD-98770 (1956).

  16. Smithsonian Meteorological Tables, prepared byRobert J. List (Smithsonian Institution, City of Washington 1958).

  17. H. C. Van De Hulst,Light Scattering by Small Particles (John Wiley & Sons, Inc., New York, N.Y. 1957), 114–128.

    Google Scholar 

  18. P. J. Wyatt, V. R. Stull andG. N. Plass,Infrared absorption of water vapor, inInfrared Transmission Studies Final Report, Volume II Contract No. AF 04(695)-96, Geophysics Research Directorate, Air Force Cambridge Research Laboratories (1962).

  19. W. G. Zdunkowski, andG. Korb,Prediction and maintenance of radiation fog, Technical Report ECOM-0049-S1, United States Army Electronics Command, Fort Monmouth, New Jersey (1967).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zdunkowski, W.G., Strand, R.F. Light scattering constants for a water cloud. PAGEOPH 74, 110–133 (1969). https://doi.org/10.1007/BF00875192

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00875192

Keywords

Navigation