Advertisement

pure and applied geophysics

, Volume 65, Issue 1, pp 196–215 | Cite as

Equations for global monsoons and toroidal circulations in the σ-coordinate system

  • M. Sankar Rao
Article

Summary

In a coordinate system in which the ground is always a coordinate surface, climatic equations for axially asymmetric and symmetric atmospheric motions are derived. These are compared with their counterparts in the pressure coordinate system. Some qualitative predictions regarding solutions are given.

Keywords

Coordinate System Atmospheric Motion Coordinate Surface Qualitative Prediction Global Monsoon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. Aden,On the theory of the general circulation of the atmosphere, Tellus14 (1962), 1102.Google Scholar
  2. [2]
    J. Aden,Preliiminary computations on the maintenance and prediction of seasonal temperatures in the troposphere. Mo. Wea. Rev.91 (1963), 375.Google Scholar
  3. [3]
    E. W. Barrett,Some applications of harmonic analysis to the study of the general circulation. A theory of three-dimensional atmospheric waves, with special reference to topographically-induced perturbations, Beiträge zur Physik der Atmosphäre34 (1961), 167.Google Scholar
  4. [4]
    J. G. Charney andA. Eliassen,A numerical method for predicting the perturbations of the middle latitude westerlies, Tellus1 (1949), 38.Google Scholar
  5. [5]
    D. R. Davies andM. B. Oakes,On the problem of formulating a relative model of the general atmospheric circulation, J. Geophys. Res.67 (1962), 3121.Google Scholar
  6. [6]
    F. Defant,Das mittlere meridionale Temperaturprofil in der Troposphäre als Effekt von vertikalen und horizontalen Austauschvorgängen und Kondensationswärme, Archiv für Meteorologie, Geophysik und Bioklimatologie, II (A)2/3 (1950), 184.Google Scholar
  7. [7]
    B. R. Döös,The influence of exchange of sensible heat with the earth's surface on the planetary flow, Tellus14, (1963), 133.Google Scholar
  8. [8]
    A. Eliassen,Slow thermally or frictionally controlled meridional circulations in circular vortex, Astrophysica Norwegica5 (1951), 19.Google Scholar
  9. [9]
    K. Gambo,The topographical effect upon the jet stream in the westerlies, J. Meteorol. Soc. Japan34 (1956), 24.Google Scholar
  10. [10]
    B. Gilchrist,The seasonal phase changes of thermally produced perturbations in the westerlies, Proc. Toronto Meteorol. Soc. (1954), 129.Google Scholar
  11. [11]
    P. A. Gilman,On the mean meridional circulation in the presence of a steady-state symmetric circumpolar vortex, Tellus16 (1964), 160.Google Scholar
  12. [12]
    P. A. Gilman,The mean meridional circulation of the southern hemisphere inferred from momentum balance, Tellus17, (1965), 277.Google Scholar
  13. [13]
    E. O. Holopainon,On the role of the mean meridional circulations in the energy balance of the atmosphere, Tellus17 (1965), 285.Google Scholar
  14. [14]
    H.-L. Kuo,Forced and free meridional circulations in the atmosphere, J. Meteor.13 (1956), 561.Google Scholar
  15. [15]
    H.-L. Kuo,Finite amplitude three-dimensional harmonic waves on spherical earth, J. Meteor.16 (1959), 101.Google Scholar
  16. [16]
    E. N. Lorenz,The predictability of hydrodynamic flow, Trans. New York Acad. Sci. (2),25 (1963), 409.Google Scholar
  17. [17]
    E. N. Lorenz,A study of the predictability of a 28-variable atmospheric model, Tellus17 (1965), 321.Google Scholar
  18. [18]
    M. Magata,On the topographical effect upon the perturbations of the middle latitude westerlies, Paps. in Meteor. and Geophys8 (1957), 25.Google Scholar
  19. [19]
    T. Murakami,The topographic effect in the three-level model of the s-coordinate, Meteor. Res. Paps.14 (1963), 144.Google Scholar
  20. [20]
    N. A. Phillips,A coordinate system having some special advantages for numerical forecasting, J. Meteor.14 (1957), 184.Google Scholar
  21. [21]
    O. Reynolds,On the dynamical theory of incompressive viscous fluids and the determination of the criterion, Philos. Trans. A cl.XXXVI (1894), 123.Google Scholar
  22. [22]
    B. Saltzman,Perturbation equations for the time-average state of the atmosphere including the effects of transient disturbances, Geophys. Pura e Appl.48 (1961), 143.Google Scholar
  23. [23]
    B. Saltzman,Empirical forcing functions for the large scale mean disturbances in the atmosphere, Geofis. Pura e Appl.52, (1962), 173.Google Scholar
  24. [24]
    B. Saltzman,A generalized solution for the large scale, time-average perturbations in the atmosphere, J. Atmos. Sci.20 (1963), 226. (Corrigula, ibid20 [1962], 465).Google Scholar
  25. [25]
    B. Saltzman,On the theory of the axially symmetric time-average state of the atmosphere, Pageoph57 (1964), 153.Google Scholar
  26. [26]
    M. Sankar-Rao Finite difference models for the stationary harmonics of atmospheric motion, Mo. Wea. Rev.93 (1965), 213.Google Scholar
  27. [27]
    M. Sankar-Rao,Continental elevation influence on the stationary harmonics of the atmospheric motion, Pageoph60 (1965), 41.Google Scholar
  28. [28]
    M. Sankar-Rao,On the influence of the vertical distribution of stationary heat sources and sinks in the atmosphere, Mo. Wea. Rev.93 (1965), 417.Google Scholar
  29. [29]
    J. Smagorinsky,The dynamical influence of large-scale heat sources and sinks on the quasistationary mean motions of the atmosphere, Quart. J. Roy. Meteor. Soc.79, (1953), 342.Google Scholar
  30. [30]
    Staff Members, Academica Sinica, Institute of Geophysics and Meteorology,On the general circulation over Eastern Asia (iii), Tellus10 (1958), 299.Google Scholar
  31. [31]
    B. N. Trubnikov,An investigation of airflow over mountainous regions with thermally inhomogeneous surfaces, Izu. Geophys.2 (1964), 293 (Bull. Acad. USSR Geophys. [1964], 170.)Google Scholar

Copyright information

© Birkhäuser Verlag 1966

Authors and Affiliations

  • M. Sankar Rao
    • 1
  1. 1.Institute of Tropical MeteorologyCouncil of Scientific and Industrial Research (India)Poona 5India

Personalised recommendations