pure and applied geophysics

, Volume 146, Issue 3–4, pp 447–467 | Cite as

Dynamic interactions between crustal shortening, extension, and magmatism in the North American Cordillera

  • Mian Liu
Article

Abstract

This paper examines the first-order dynamic interactions between crustal shortening, extension, and volcanism in tectonic evolution in the North American Cordillera. The protracted crustal compression in the Mesozoic and early Cenozoic (110−55 Ma) contributed to the subsequent Tertiary extension by thermally weakening the lithosphere and producing an overthickened (>50 km) and gravitationally unstable crust. In addition to post-kinematic burial heating, synkinematic thermal processes including conduction are shown significantly because of the long period of crustal contraction and the slow shortening rates (<4 mm/yr). The effects of shear heating were probably limited for the same reasons. Localized delamination of the lithospheric mantle may have contributed to the abundant plutonism and high crustal temperature in the southeastern Canadian Cordillera at the end of the orogeny. Most early-stage extension in the Cordillera, characterized by formation of metamorphic core complexes, resulted from gravitational collapse of the overthickened crust. Plutionism may have facilitated strain localization, causing widespread crustal extension at relatively low stress levels. Crustal collapse, however, was unlikely the direct cause of the Basin-Range extension, because the gravitational stresses induced by crustal thickening are limited to the crust; only a small fraction of the gravitational stresses may be transmitted to the lithospheric mantle. Nor could core complex formation induce the voluminous mid-Tertiary volcanism, which requires major upwelling of the asthenosphere. While the causes of the asthenospheric upwelling are not clear, such processes could provide the necessary conditions for the Basin-Range extension: the driving force from thermally induced gravitational potential and a thermally weakened lithosphere. The complicated spatial and temporal patterns of volcanism and extension in the Basin and Range province may be partially due to the time-dependent competing effects of thermal weakening and rheological hardening associated with intrusion and underplating of mantle-derived magmas.

Key words

Continental extension crustal shortening metamorphic core complex Basin and Range 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atwater, T. (1970),Implications of Plate Tectonics for the Cenozoic Tectonic Evolution of Western North America, Geol. Soc. Am. Bull.81, 3513–3536.Google Scholar
  2. Armstrong, R. L., andWard, P. (1991),Evolving Geographic Patterns of Cenozoic Magmatism in the North American Cordillera: The Temporal and Spatial Association of Magmatism and Metamorphic Core Complexes. J. Geophys. Res.96, 13,201–13,224.Google Scholar
  3. Artyushkov, E. V. (1973),Stresses in the Lithosphere Caused by Crustal Thickness Inhomogeneities, J. Geophys. Res.78, 7675–7690.Google Scholar
  4. Axen, G. J., Taylor, W., andBartley, J. M. (1993),Space-time Patterns and Tectonic Controls of Tertiary Extension and Magmatism in the Great Basin of the Western United States, Geol. Soc. Am. Bull.105, 56–72.Google Scholar
  5. Best, M. G., andChristiansen, E. H. (1991),Limited Extension during Peak Tertiary Volcanism, Great Basin of Nevada and Utah, J. Geophys. Res.96, 13,509–13,528.Google Scholar
  6. Bird, P. (1991),Lateral Extrusion of Lower Crust from under High Topography, in the Isostatic Limit, J. Geophys. Res.96, 102,755–102,866.Google Scholar
  7. Bird, P. (1979),Continental Delamination and the Colorado Plateau, J. Geophys. Res.84, 7561–7571.Google Scholar
  8. Burchfiel, C. B., andDavis, G. A. (1975),Nature and Controls of Cordilleran Orogenesis, Western United States: Extensions of an Ealier Synthesis, Am. J. Sci.275-A, 363–396.Google Scholar
  9. Block, L., andRoyden, L. H. (1990),Core Complex Geometries and Regional Scale Flow in the Lower Crust, Tectonics9, 557–567.Google Scholar
  10. Brace, W. F. (1972),Laboratory Studies of Stick-slip, and their Application to Earthquakes, Tectonophysics14, 189–200.Google Scholar
  11. Byerlee, J. D. (1978),Friction of Rocks, Pure and Appl. Geophys.116, 615–626.Google Scholar
  12. Carr, S. D. (1992),Tectonic Setting and U-Pb Geochronology of the Early Tertiary Ladybird Leucogranite Suite, Thor-Odin-Pinnacles Area, Southern Omineca Belt, British Colombia, Tectonics11, 258–278.Google Scholar
  13. Chen, W-P., andMolnar, P. (1983),Focal Dephts of Intracontinental and Intraplate Earthquakes and their Implications for the Thermal and Mechanical Properties of the Lithosphere, J. Geophys. Res.88, 4183–4214.Google Scholar
  14. Coney, P. J. (1980),Cordilleran Metamorphic Core Complexes: An Overview, Mem. Geol. Soc. Am.153, 7–31.Google Scholar
  15. Coney, P. J.,The regional tectonic setting and possible causes of Cenozoic extension in the North American Cordillera. InContinental Extensional Tectonics (Coward, M. P., Dewey, J. F., and Hancock, P. L., eds.) (Geological Society Special Publ.28, 1987), pp. 177–186.Google Scholar
  16. Coney, P. J., andHarms, T. A. (1984),Cordilleran Metamorphic Core Complexes: Cenozoic Extensional Relices of Mesozoic Compression, Geology12, 550–554.Google Scholar
  17. Dickinson, W. R., andSnyder, W. S. (1979),Geometry of Subducted Slabs Related to the San Andreas Transform, J. Geol.87, 609–627.Google Scholar
  18. Eaton, G. P., Wahl, R. R., Prostka, H. J., Maney, D. R., andKleinkopf, M. D.,Regional gravity and tectonic patterns: Their relation to late Cenozoic epeirogeny and lateral spreading in the western Cordillera. InCenozoic Tectonics and Regional Geophysics of the Western Cordillera (Smith, R. B., and Eaton, G. P., eds.) (Mem. Geol. Soc. Am.152, 1978) pp. 51–91.Google Scholar
  19. England, P. C., andRichardson, S. W. (1977),The Influence of Erosion upon Mineral Facies of Rocks from Different Metamorphic Environments, J. Geol. Soc. Lond.134, 201–213.Google Scholar
  20. England, P. C., andThompson, A. B. (1984),Pressure-temperature-time Paths of Regional Metamorphism I. Heat Transfer during the Evolution of Regions of Thickened Continental Crust, J. Petrol.25, 894–928.Google Scholar
  21. Elison, M. W. (1991),Intracontinental Contraction in Western North America: Continuity and Episodicity, Geol. Soc. Am. Bull.103, 1226–1238.Google Scholar
  22. Gans, P. B. (1987),An Open-system, two-layer Crustal Stretching Model for the Eastern Great Basin, Tectonics6, 1–12.Google Scholar
  23. Gans, P. B., Mahood, G. A., andSchermer, E. (1989),Synextensional Magmatism in the Basin and Range Province: A Case Study from the Eastern Great Basin. Geol. Soc. Am. Spec. Paper233, 58 pp.Google Scholar
  24. Gregory, K. M., andChase, C. G. (1992),Tectonic Significance of Paleobotanically Estimated Climate and Altitude of the Late Eocene Erosion Surface, Colorado, Geology20, 581–585.Google Scholar
  25. Hildreth, W. (1981),Gradients in Silicic Magma Chambers: Implications for Lithospheric Magmatism, J. Geophys. Res.86, 10,153–10,192.Google Scholar
  26. Houseman, G. A., McKenzie, D. P., andMolnar, P. (1981),Convective Instability of a Thickened Boundary Layer and its Relevance for the Thermal Evolution of Continental Convergent Belts, J. Geophys. Res.86, 6115–6132.Google Scholar
  27. Johnson, C. M. (1991),Large-scale Crustal Formation and Lithosphere Modification beneath Middle to Late Cenozoic Calderas and Volcanic Fields, Western North America, J. Geophys. Res.96, 13,485–13,508.Google Scholar
  28. Kirby, S. H., andKronenberg, A. K. (1987),Rheology of the Lithosphere: Selected Topics, Rev. Geophys.25, 1219–1244.Google Scholar
  29. Lachenbruch, A. H. (1970),Crustal Temperature and Heat Production: Implications for the Linear Heat-flow Relation, J. Geophys. Res.75, 3291–3300.Google Scholar
  30. Lachenbruch, A. H., andSass, J. H.,Models of an extending lithosphere and heat flow in the Basin and Range province. InCenozoic Tectonics and Regional Geophysics of the Western Cordillera (Smith, R. B., and Eaton, G. P., eds.) (Mem. Geol. Soc. Am.152, 1978) pp. 209–250.Google Scholar
  31. Leeman, W. P., andHarry, D. L. (1993),A Binary Source Model for Extension-related Magmatism in the Great Basin, Western North America, Science262, 1550–1554.Google Scholar
  32. Lipman, P. W.,Cenozoic volcanism in the western United States: Implication for continental tectonics. InStudies in Geophysics: Continental Tectonics (National Academy of Sciences, Washington, D.C. 1980) pp. 161–174.Google Scholar
  33. Lister, G. S., andBaldwin, S. L. (1993),Plutonism and the Origin of Metamorphic Core Complexes, Geology21, 607–610.Google Scholar
  34. Liu, M., andChase, C. G. (1991),Evolution of Hawaiian Basalts: A Hotspot Melting Model. Earth. Planet. Sci. Lett.104, 151–165.Google Scholar
  35. Liu, M., andFurlong, K. P. (1992),Cenozoic Volcanism in the California Coast Ranges: Numerical Solutions, J. Geophys. Res.97, 4941–4957.Google Scholar
  36. Liu, M., andFurlong, K. P. (1993),Crustal Shortening and Eocene Extension in the Southeastern Canadian Cordillera: Since Thermal and Mechanical Considerations, Tectonics12, 776–786.Google Scholar
  37. Liu, M., andFurlong, K. P. (1994),Intrusion and Underplating of Mafic Magmas: Thermal-rheological Effects and Implications for Tertiary Tectonomagmatism in the North American Cordillera, Tectonophysics237, 175–187.Google Scholar
  38. Lynch, H. D., andMorgan, P.,The tensile strength of the lithosphere and the localization of extension. InContinental Extensional Tectonics (Coward, M. P., Dewey, J. F., and Hancock, P. L., eds.) (Geological Society Special Publ.28, 1987) pp. 53–66.Google Scholar
  39. McKenzie, D., andBickle, M. J. (1988),The Volume and Composition of Melt Generated by Extension of the Lithosphere, J. Petrol.29, 625–679.Google Scholar
  40. Molnar, P., andEngland, P. (1990),Temperatures, Heat Flux, and Frictional Stress near Major Thrust Faults. J. Geophys. Res.95, 4833–4856.Google Scholar
  41. Oxburgh, E. R., andTurcotte, D. L. (1974),Thermal Gradients and Regional Metamorphism in Overthrust Terrains with Special Reference to the Eastern Alps, Schweiz. Min. Petr. Mitt.54, 641–622.Google Scholar
  42. Peacock, S. M. Thermal modeling of metamorphic pressure-temperature-time paths: A forward approach. InMetamorphic Pressure-Temperature-Time Paths (Spear, F. S., and Peacock, S. M., eds.) (AGU, Washington, D.C. 1989) pp. 57–99.Google Scholar
  43. Pakiser, L. C.,Seismic exploration of the crust and upper mantle of the Basin and Range province. InGeologists and Ideas: A History of North American Geology (Drake, E. T., and Jordan, W. M., eds.) (Geol. Soc. Am., Continnian Special 1, 1985) pp. 453–469.Google Scholar
  44. Parrish, R. R., Carr, S. D., andParkinson, D. L. (1988),Eocene Extensional Tectonics and Geochronology of the Southern Omineca Belt, British Columbia and Washington, Tectonics7, 181–212.Google Scholar
  45. Ranalli, G., Brown, R. L., andBosdachin, R. (1989),A Geodynamic Model for Extension in the Shuswap Core Complex, Southeastern Canadian Cordillera, Can. J. Earth Sci.26, 1647–1653.Google Scholar
  46. Romanowicz, B. A. (1979),Seismic Structure of the Upper Mantle beneath the United States by Three-dimensional Inversion of Body Wave Arrival Times, Geophys. J. Roy. Astro. Soc.57, 479–506.Google Scholar
  47. Rutter, E. H., andBrodie, K. H. (1988),The Role of Tectonic Grain Size Reduction in the Rheological Stratification of the Lithosphere, Geol. Rundschau77, 295–308.Google Scholar
  48. Ruppel, C., Royden, L., andHodges, K. V. (1988),Thermal Modeling of Extensional Tectonics: Application to Pressure-temperature-time Histories of Metamorphic Rocks, Tectonics7, 947–957.Google Scholar
  49. Sengor, A. M. C., andBurke, K. (1978),Relative Timing of Rifting and Volcanism on Earth and its Tectonic Implications, Geophys. Res. Lett.5, 419–421.Google Scholar
  50. Severinghaus, J., andAtwater, T.,Cenozoic geometry and thermal state of the subducting slabs beneath western North America. InBasin and Range Extensional Tectonics near the Latitude of Las Vegas, Nevada (Wernicke, B. P., ed.) (Geol. Soc. Am. Mem.176, 1990) pp. 1–22.Google Scholar
  51. Shen, Y. Q., andLiu, M. (1994),Dynamic Links between Core Complex Formation and the Basin and Range Development, EOS Trans., AGU75, 678.Google Scholar
  52. Shi, Y., andWang, C.-Y. (1988),Two-dimensional Modeling of the P-T-t Paths of Regional Metamorphism in Simple Overthrust Terrains, Geology15, 1048–1051.Google Scholar
  53. Sonder, L. J., England, P. C., Wernicke, B., andChristiansen, R. L.,A physical model for cenozoic extension of western North America. InContinental Extensional Tectonics (Coward, M. P., Dewey, J. F., and Hancock, P. L., eds.) (Geological Society Special Publ.28, 1987) pp. 187–201.Google Scholar
  54. Stewart, J. H.,Basin and Range structure in western North America: A Review. InCenzoic Tectonics and Regional Geophysics of the Western Cordillera (Smith, R. B., and Eaton, G. L., eds.) (Mem. Geol. Soc. Am.152, 1978) pp. 1–31.Google Scholar
  55. Thompson, G. A., Catchings, R., Goodwin, E., Holbrook, S., Jarchow, C., Mann, C., McCarthy, J., andOkaya, D.,Geophysics of the western Basin and Range Province. InGeophysical Framework of the Continental United States (Pakiser, L. C., and Mooney, W. D., eds.) (Geol. Soc. Am. Mem.172, 1989) pp. 177–203.Google Scholar
  56. Taylor, W. J., andBartley, J. M. (1992),Prevolcanic Extensional Seaman Breakaway Fault and its Geological Implications for Eastern Nevada and Western Utah, Geol. Soc. Am. Bull.104, 255–266.Google Scholar
  57. Taylor, W. J., Bartley, J. M., Lux, D. L., andAxen, G. J. (1989),Timing of Tertiary Extension in the Railroad Valley-Pioche Transect, Nevada: Constraints from 40Ar/39Ar ages of Volcanic Rocks, J. Geophys. Res.94, 7757–7774.Google Scholar
  58. Turcotte, D. L., andSchubert, G.,Geodynamics (John Wiley & Sons, New York 1982) 237 pp.Google Scholar
  59. Wernicke, B., Christiansen, R. L. England, P. C., andSonder, L. J.,Tectonomagmatic evolution of Cenozoic extension in the North American Cordillera. InContinental Extensional Tectonics (Coward, M. P., Dewey, J. F., and Hancock, P. L., eds.) (Geological Society Special Publ.28, 1987) pp. 203–221.Google Scholar
  60. Wilson, J. M., McCarthy, J., Johnson, R. A., andHoward, K. A. (1991),An Axial View of a Metamorphic Core Complex: Crustal Structure of the Whipple and Chemehuevi Mountains, Southeastern California, J. Geophys. Res.96, 12,293–12,311.Google Scholar
  61. Zen, E-an (1988),Thermal Modeling of Stepwise Anatexis in a Thrust-thickened Sialic Crust, Trans. Roy. Astro. Soc. Edinburgh79, 223–235.Google Scholar
  62. Zoback, M. D., andHealy, J. H. (1984),Friction, Faulting, and “in situ” Stress, Ann. Geophys.2, 689–698.Google Scholar
  63. Zoback, M. D., Anderson, R. E., andThompson, G. A. (1981),Cenozoic Evolution of the State of Stress and Style of Tectonism of the Basin and Ranges Province of the Western United States. Phil. Trans. Roy. Soc., London SerialA 300, 407–434.Google Scholar

Copyright information

© Birkhäuser Verlag 1996

Authors and Affiliations

  • Mian Liu
    • 1
  1. 1.Department of Geological SciencesUniversity of MissouriColumbiaUSA

Personalised recommendations