pure and applied geophysics

, Volume 129, Issue 1–2, pp 41–69 | Cite as

Morphologic and geologic effects of the subduction of bathymetric highs

  • William R. McCann
  • Ray E. Habermann
Article

Abstract

Morphologic and geologic observations suggest that subduction of bathymetric highs, such as aseismic ridges, chains of seamounts, and fracture zones, are important in the development of many forearc features and that those features form during relatively brief episodes of intense tectonism. A bathymetric high obliquely entering a subduction zone tends to compress sediments along its leading edge, resulting in arcward compression of the accretionary wedge. A landward deflection of the trench axis and a steepened inner wall result from this deformation. If a significant component of oblique slip occurs along the subduction zone, then along-strike movement of the accretionary wedge may also occur. Stresses resulting from subduction of bathymetric features with sufficient buoyancy or high relief extend farther landward than in the case of smaller, less buoyant features, inducing uplift of the leading edge of the overriding plate. Tectonic erosion of the base of the overriding plate and along-strike transport of are material may also occur. The accelerated tectonism observed along several convergent margins can be attributed to the consumption of bathymetric irregularities on the seafloor rather than temporally abrupt changes in rates and directions of plate motions or other episodic events in the accretionary prism.

Key words

Subduction tectonic erosion uplift aseismic ridges subsidence deformation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amadek, S., Tajima, F., andWeins, D. (1987),Seismic rupture associated with subduction of the Cocos Ridge, Tectonics6, 757–774.Google Scholar
  2. Barazangi, M. andIsacks, B., (1976),Spatial distribution of earthquakes and subduction of the Nazca Plate beneath South America, Geology4, 686–692.Google Scholar
  3. Bentley, L., (1974),Crustal structure of the Carnegie Ridge, Panama Basin and Cocos Ridge, unpubl. M. S. Thesis, Univ. of Hawaii.Google Scholar
  4. Birch, F., (1970),The Barracuda Fault Zone in the Western North Atlantic: Geological and Geophysical Studies, Deep Sea Research17, 847–859.Google Scholar
  5. Bodine, J. andWatts, A. (1979),On Lithospheric flexure seaward of the Bonin and Marianas trenches, Earth and Planet. Sci. Lett.43, 132–148.Google Scholar
  6. Broggi, J., (1946),Las Terrazas Marinas de la Bahia de San Juan en Ica, Soc. Geol. Peru Bol.19, 21–23.Google Scholar
  7. Brasier, M. andDonahue, J. (1985),Barbuda—an Emerging Reef and Lagoon Complex on the Edge of the Lesser Antilles Island Arc., J. Geol. Soc. London142, 1101–1117.Google Scholar
  8. Carney, J. andMacfarlane, A. (1982),Geologic Evidence Bearing on the Miocene to Recent Structural Evolution of the New Hebrides Arc, Tectonophysics87, 147–175.Google Scholar
  9. Case, J. andHolcombe, T. (1980),Geologic-tectonic map of the Caribbean Region, U.S. Geol. Surv. Misc. Invest. Ser., MAP I-1100.Google Scholar
  10. Chase, C., Menard, H., andMammerickx, J., (1980),Bathymetry of the North Pacific, Charts 1–6, Scripps Inst. of Oceanography, La Jolla, CA.Google Scholar
  11. Chung, W. andKanamori, H. (1978),Subduction Process of a Fracture Zone and Aseismic Ridges—the Focal Mechanism of the New Hebrides Earthquake of 1969 January 19 and Some Related Events, Geophys. J. Roy. Astrom. Soc.54, 221–240.Google Scholar
  12. Couch, R. andWhisett, R. (1981),Structures of the Nazca Ridge and Continental Slope of Southern Peru, Geol. Soc. Amer. Mem.154, 587–618.Google Scholar
  13. Coulbourn, W. (1981),Tectonics of the Nazca Plate and the Continental Margin of Western South America 18 to 23S, Geol. Soc. Amer. Mem.154, 587–618.Google Scholar
  14. Cross, T. andPilger, R. (1982),Controls of Subduction Geometry, Location of Magmatic Arcs, and Tectonics of Arc and Back-arc Regions, Geol. Soc. Amer. Bull.93, 545–562.Google Scholar
  15. Curray, G., Shor, G., Raitt, R., andHenry, H. (1977),Seismic refraction and reflection studies of crustal structure in the eastern Sunda and western Banda Arcs, J. Geophys. Res.82, 2479–2489.Google Scholar
  16. Cutler, S. (1977),Geophysical Investigation of the Nazca Ridge, M Sc. Thesis, Univ. of Hawaii, Honolulu.Google Scholar
  17. Davis, D., Suppe, J., andDahlen, T. (1983),Mechanics of fold-and-thrust belts and accretionary wedges. J. Geophys. Res.88, 1153–1172.Google Scholar
  18. Eissler, H. andKanamori, J. (1982),A large normal-fault earthquake at the junction of the Tonga Trench and the Louisville Ridge, Phys. Earth Planet. Int.29, 161–172.Google Scholar
  19. Erlich, E. (1979),Recent structures of Kamchatka and position of Quaternary volcanoes, Bull. Volcanol.42, 13–42.Google Scholar
  20. Fischer, K. andMcCann, W. (1984),Velocity modeling and earthquake relocations in the northeast Caribbean, Bull. Seim. Soc. Amer.74, 90–104.Google Scholar
  21. Fischer, K. (1980),Recent tectonic movements of the Costa Rican Pacific Coast, Tectonophysics70, t25-t33.Google Scholar
  22. Forsythe, R. andNelson, E. (1985),Geological manifestations of Ridge collision: Evidence from the Golfo de Penas-Taitao Basin, Southern Chile, Tectonics4, 477–495.Google Scholar
  23. Frankel, A., McCann, W., andMurphy A. (1980),Observations from a seismic network in the Virgin Islands region: Tectonic structures and earthquake swarms, J. Geophys. Res.85, 2669–2678.Google Scholar
  24. Fryer, P. andHussong, D. (1983)Effects of subduction of seamounts on the Mariana and Izu-Bonin forearc regions (abstract), Trans. Amer. Geophys. Union.64, 829.Google Scholar
  25. Hayes, D. andEwing, M. (1971),The Louisville Ridge—a possible extension of the Eltanin fracture zone, Antartic Res. Ser.15, 223–228.Google Scholar
  26. Hayes, D. andLewis S. (1985),Structure and tectonics of the Manila Trench System, Western Luzon, Philippines, Energy10, 263–279.Google Scholar
  27. Hilde, T. (1983),Sediment subduction versus accretion around the Pacific, Tectonophysics99, 381–397.Google Scholar
  28. Holden, J. andDietz, R. (1972),Galapagos Gore, NazCoPac triple junction and Carnegie Cocos Ridge, Nature235, 266–269, 1972.Google Scholar
  29. House, L. andK. Jacob (1983),Earthquakes, plate subduction, and stress reversals in the Eastern Aleutian Arc, J. Geophys. Res.88, 9347–9374.Google Scholar
  30. Horsefield, W. (1975)Quaternary vertical movements in the Greater Antilles, Geol. Soc. Amer. Bull.86, 933–938.Google Scholar
  31. Hsu, T. andBloom, A. (1985),Quaternary marine terraces and maximum tectonic uplift rate of the Peruvian coast at 15.5S latitude, (abs) Geol. Soc. Amer., 614.Google Scholar
  32. Hsu, T., Wehmiller, J., andBautin, B. (1986),Correlation of late pleistocene Peruvian coastal marine terraces 14.5 to 15.5S latitude by amino acid enantiometric ratios, (abs) Geol. Soc. Amer. 641.Google Scholar
  33. Hussong, D. andFryer, P. (1983),Forearc tectonics and the morphology of the Northern Mariana arc (abstract), EOS, Trans. Amer. Geophys. Union64, 828.Google Scholar
  34. Hussong, D., et al. (1976),Crustal structure of the Peru-Chile trench; 8–12S latitude, inThe Geophysics of the Pacific Ocean Basin and its margins, AGU, Washington D.C., 17–85.Google Scholar
  35. Johnson, B., Powell, C., andVeevers, J. (1976),Spreading History of the Eastern Indian Ocean and Greater India's northward flight from Antarctica and Australia, Geol. Soc. Amer. Bull.87, 1560–1566.Google Scholar
  36. Johnson, S., andNess, G. (1981),Shallow structures of the Peru Margin 12–18S, Geol. Soc. Amer. Mem.154, 525–544.Google Scholar
  37. Jones, P. (1981),Crustal Structures of the Peru continental margin and adjacent Nazca Plate, 9S latitude, Geol. Soc. Amer. Mem.154, 423–444.Google Scholar
  38. Karig, D. (1972),Remnant arcs, Geol. Soc. Amer. Bull.83, 1057–1068.Google Scholar
  39. Karig, D. andSharman, G. (1975),Subduction and accretion in trenches, Geol. Soc. Amer. Bull.86, 377–389.Google Scholar
  40. Karig, D., Lawrence, M., andCurray, J. (1980),Structural framework of the forearc basin, J. Geol. Soc. Lond.127, 1–15.Google Scholar
  41. Karig, D. andKay, R. (1981),Fate of sediments on the descending plate at convergent margins, Phil. Trans. R. Soc. Lond. Ser. A,A301, 233–251.Google Scholar
  42. Kelleher, J. andMcCann, W. (1976),Buoyant zones, great thrust earthquakes, and unstable boundaries of subduction, J. Geophys. Res.89, 4885–4895.Google Scholar
  43. Keller, G., (1980),Benthic foraminifera and Paleobathymetry of the Japan Trench area, Leg 57, Deep Sea Drilling Project, in Scientific Party Init. Rept. DSDP 56, 57 Pt. 2, Washington, D.C., 835–865.Google Scholar
  44. Kulm, L., Prince, R., French, W., Johnson, S., andMasias, A. (1981a),Crustal structure and tectonics of the central Peru Continental Margin, Geol. Soc. Amer. Mem.,154, 445–468.Google Scholar
  45. Kulm, L., Schrader, H., Resig, J., Thornburg, T., Masias, A., andJohnson, L. (1981b),Late Cenozoic carbonates on the Peru continental margin: Lithostratigraphy, biostratigraphy and tectonic history, Geol. Soc. Amer. Mem.154, 468–508.Google Scholar
  46. Larson, R., Carpenter, G., andDiebold, J. (1978),A geophysical study of the Wharton Basin near the Investigator fracture zone, J. Geophys. Res.83, 773–782.Google Scholar
  47. Liu, C., Curray, J., andMcDonald, J. (1984),New constraints on the tectonic evolution of the eastern Indian Ocean, Earth and Planet. Sci. Lett.65, 331–342.Google Scholar
  48. Lonsdale, P., (1978),Ecuadorian Subduction System, Am. Assoc. Petrol. Geol. Bull.62, 2454–2477.Google Scholar
  49. Lonsdale, P. andMalfait, B. (1974),Abyssal dunes of foraminiferal sand on the Carnegie Ridge, Geol. Soc. Amer. Bull.85, 1697–1712.Google Scholar
  50. Ludwig, W., Murachi, S., Den, N., Buhl, P., Hotta, H., Ewing, M., Asanuma, T., Yoshii, T., andSakajiri, N. (1973),Structure of east China Sea-west Philippine Sea margin of southern Kyushu, Japan, J. Geophys. Res.78, 2526–2536.Google Scholar
  51. Lundberg, N. (1983),Development of forearcs in intraoceanic subduction zones, Tectonics2, 51–61.Google Scholar
  52. Maillet, P., Manzier, M., Selo, M., andStrozer, D. (1983),The d'Entrecasteaux Zone (southwest Pacific): A petrological and geochronological reappraisal, Mar. Geol.53, 179–197.Google Scholar
  53. Mammerickx, J., Smith, S., Taylor, I., andChase, T. (1973),Bathymetry of the Southwest Pacific, Charts 11–21, Inst. Marine Res., Univ. of Ca., La Jolla, Ca.Google Scholar
  54. McCann, W., Dewey, J., Murphy, A., andHarding, J. (1982),A large normal-fault earthquake in the overriding wedge of the Lesser Antilles subduction in the overriding wedge of the Lesser Antilles subduction zone: The earthquake of October 8, 1974, Bull. Seismol. Soc. Amer.72, 2267–2284.Google Scholar
  55. McCann, W. andSykes, L. (1984),Subduction of aseismic ridges beneath the Caribbean plate: Implications for the seismicity and seismic potential of the northeastern Caribbean, J. Geophys. Res.89, 4493–4519.Google Scholar
  56. McDonald, J., (1977),Sediments and the structure of the Nicobar Fan, northeast Indian Ocean, Ph.D. Thesis, Univ. of Ca. Scripps Inst. Ocean., San Diego, Ca.Google Scholar
  57. Moretti, I. andNgokwey, K. (1985),Aseismic Ridge Subduction and Vertical Motion of Overriding Plate, inCaribbean Dynamics (ed. A. Mascle) (Technip Paris) pp. 245–253.Google Scholar
  58. Moore, G., Billman, H., Hehanussa, P., andKarig, D. (1980),Sedimentology and paleobathmetry of Neogene trench slope deposits, Nias Island, Indonesia, J. Geol.88, 161–180.Google Scholar
  59. Moore, J. et al. (1979),Progressive accretion in the Middle America Trench, southern Mexico, Nature281, 638–642.Google Scholar
  60. Murachi, S. et al. (1968),Crustal structure of the Philippine Sea, J. Geophys. Res.73, 3143–3171.Google Scholar
  61. Newcomb, K. andMcCann, W. (1987),Seismic history and seismotectonics of the Sunda Arc, J. Geophys. Res.92, 421–439.Google Scholar
  62. Nishenko, S., (1985),Seismic potential for great interplate earthquakes along the Chilean margin of South America: a quantitative reappraisal, J. Geophys. Res.90, 3589–3616.Google Scholar
  63. Nishizawa, A., Suyehiro, K., andShimizu, H. (1983),Seismic Refraction Experiment at the Amami Plateau, J. Phys. Earth31, 159–171.Google Scholar
  64. Nur, A., andZ. Ben-Avraham (1981),Voleanic gaps and the consumption of aseismic ridges in South America, Geol. Soc. Amer. Mem.154, 929–940.Google Scholar
  65. Nur, A., andBen-Avraham, Z. (1982),Oceanic Plateaus, the Fragmentation of Continents, and Mountain Building, J. Geophys. Res.87, 3644–3661.Google Scholar
  66. Nur, A. (1983),Accreted Terranes, Rev. of Geophys. and Space Phys.21, 1779–1785.Google Scholar
  67. Pavlis, T. andBruhn, R. (1983),Deep-seated flow as a mechanism for the uplift of broad forearc ridges and its role in the exposure of high P/T metamorphic terranes, Tectonics2, 473–497.Google Scholar
  68. Pilger, R. (1983),Plate reconstructions, aseismic ridges and low-angle subduction beneath the Andes, Geol. Soc. Amer. Bull.92, 448–456.Google Scholar
  69. Pilger, R., andHandschumacher, D. (1981),The fixed-hotspot hypothesis and origin of the Easter-Sala y Gomez-Nazca trace, Geol. Soc. Amer. Bull.92, 448–456.Google Scholar
  70. Prince, R., Schweller, W., Coulbourn, T., Sheperd, G., Ness, G., andMasias, A. (1980),Bathymetry of the Peru-Chile continental margin and Trech, Geol. Soc. Amer. Map Ser. MC-34.Google Scholar
  71. Seely, D., (1978),The Evolution of structural highs bordering major forearc basins, Bull. Am. Assoc. Petrol. Geol.29, 245–60.Google Scholar
  72. Shimizaki, K. andNakata, T. (1980),Time-Predicatable recurrence model for large earthquakes, Geophys. Res. Lett7, 279–282.Google Scholar
  73. Shreve, R., andCloos, M. (1986),Dynamics of Sediment subduction, Melange formation, and prism accretion, J. Geophys. Res.91, 10229–45.Google Scholar
  74. Silver, E., McCaffrey, R., andSmith, R. (1983),Collision, Rotation, and the initiation of subduction in the evolution of Sulawesi, Indonesia, J. Geophys. Res.88, 9407–9418.Google Scholar
  75. Stein, S., Engeln, J., Weins, D., Fujita, K., andSpeed, S. (1982),Subduction seismicity and tectonics in the Lesser Antilles Arc, J. Geophys. Res.87, 8642–8664.Google Scholar
  76. Suess, F., andvon Huene, R. (1987),Summary of Leg 112 Results, Joides J.13, 31–43.Google Scholar
  77. Taylor, F., Jouannic, C., andBloom, A. (1985),Quaternary Uplift of the Torres Islands, Northern New Hebrides Frontal Arc: Comparison with Santo and Malekula Islands, Central New Hebrides Frontal Arc, J. of Geology93, 419–438.Google Scholar
  78. Thornburg, T. andKulm, L. (1981),Sedimentary basins of the Peru continental margin: Structure, stratigraphy and Cenozoic tectonics from 6 to 16 south latitude, Geol. Soc. Am. Mem.154, 393–422.Google Scholar
  79. Vogt, P. (1973),Subduction of aseismic ridges, Nature241, 189.Google Scholar
  80. Vogt, P., Lowrie, A., Bracey, D., andHey, R. (1976),Subduction of aseismic oceanic ridges: Effects on shape, seismicity and other characteristics of consuming plate boundaries, Geol. Soc. Amer. Spec. Paper172.Google Scholar
  81. von Huene, R. et al. (1980),The Deep Sea Drilling Project midtrench transect off Guatemala, Geol. Soc. Amer. Bull.91, 421–432.Google Scholar
  82. Wageman, J., Hilde, T., andEmery, K. (1970),Structural Framework of East China Sea and Yellow Sea, Amer. Assoc. Petrol. Geol. Bull.54, 1611–1643.Google Scholar
  83. Warsi, E., Hilde, T., andSearle, R. (1983),Convergence Structures of the Peru Trench Between 10S and 14S, Tectonophysics99, 313–329.Google Scholar
  84. Watts, A. (1978),An analysis of isostasy of the world's oceans. I. Hawaiian-Emperor Seamount chain, J. Geophys. Res.83, 5989–6004.Google Scholar
  85. Watts, A., Bodine, J., andRibe, N. (1980),Observations of flexure and the geologic evolution of the Pacific Ocean Basin, Nature283, 532–537.Google Scholar
  86. Westbrook, G. (1982),The Barbados ridge complex: Tectonics of a mature forearc system, inTrench-Forearc Geology: Sedimentation and Tectonics on Modern and Ancient Active Plate Margins (ed. Leggett, J.) Geol. Soc. London, London) pp. 275–290.Google Scholar
  87. Yonekura, N. (1983),Late Quaternary Vertical Crustal Movements in and Around the Pacific as Deduced From Former Shoreline Data, inGeodynamics of the Western Pacific-Indonesian Region (T. Hilde andS. Uyeda, eds.) AGU Geodynamic Series Vol. 11, Boulder, Colorado.Google Scholar

Copyright information

© Birkhäuser Verlag 1989

Authors and Affiliations

  • William R. McCann
    • 1
  • Ray E. Habermann
    • 2
  1. 1.Department of GeologyUniversity of Puerto RicoMayagüezUSA
  2. 2.NOAA/NGDC E/GC1BoulderUSA

Personalised recommendations