Skip to main content
Log in

Instability on a weakening fault

  • Published:
pure and applied geophysics Aims and scope Submit manuscript

Abstract

Weakening of a prestressed sawcut in Westerly granite under laboratory condition is accomplished by injecting pressurized fluid into the sawcut. After injection a sequence of stick-slips is observed while the deviatoric stress decreases successively with each stick-slip. On the basis of the experimental observation we develop a model of fault instability due to inhomogeneous and progressive weakening of the fault. According to this model, the fault surface is divided into the ‘slipped’ and the ‘locked’ regions, depending on whether or not the local state of stress satisfies the friction criterion. The average shear stress in the slipped region decreases with time and, in order to maintain a quasi-static equilibrium, shear stress in the remaining ‘locked’ region on the fault surface increases. This situation may last until a critical state of stress on the fault is met, at which a sudden instability (stick0slip) may occur. We suggest that this mechanism of stress transfer may be a viable mechanism of induced seismicity and aftershocks, in addition to the well-known mechanism of a local increase of pore pressure. By comparing the experimental data with model predictions we show that the critical condition for slip instability is when the average shear stress over the ‘locked’ region becomes equal to the value given by the friction criterion. Thus the friction criterion established for slip on fractures on which the state of stress is macroscopically uniform may also be applicable to fractures on which the stress state is macroscopically heterogeneous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bell, M. L., andNur, A. (1978),Strength Changes Due to Reservoir-Induced Pore Pressure and Stresses and its Application to Lake Oroville, J. Geophys. Res.83, 4469.

    Google Scholar 

  • Booker, J. R. (1974),Time Dependent Strain Following Faulting of a Porous Medium, J. Geophys. Res.,79, 2037.

    Google Scholar 

  • Brace, W. F. (1965),Some New Measurements of Linear Compressibility of Rocks, J. Geophys. Res.,70, 391.

    Google Scholar 

  • Brace, W. F., andByerlee, J. D. (1966),Stick-Slip as a Mechanism for Earthquakes, Science153, 990.

    Google Scholar 

  • Brace, W. F., Walsh, J. B., andFrangos, W. T. (1968),Permeability of Granite Under High Pressure, J. Geophys. Res.73, 2225.

    Google Scholar 

  • Brar, N. S., andStesky, R. M. (1980),Permeability of Intact and Jointed Rock, EOS61 (46), 112.

    Google Scholar 

  • Byerlee, J. D. (1967),Frictional Characteristics of Granite Under High Confining Pressure, J. Geophys. Res.72, 341.

    Google Scholar 

  • Byerlee, J. D. (1978),Friction of Rocks, Pure Appl. Geophys.116, 615.

    Google Scholar 

  • Carslaw, H. S., andJaeger, J. C.,Conduction of Heat in Solids, 2nd ed. (Oxford Univ. Press, London 1959).

    Google Scholar 

  • Dieterich, J. H. (1978),Time-Dependent Friction and the Mechanics of Stick-Slip, Pure Appl. Geophys.116, 790.

    Google Scholar 

  • Dieterich, J. H. (1979a),Modelling of Rock Friction: I. Experimental Results and Constitutive Equations, J. Geophys. Res.84, 2161.

    Google Scholar 

  • Dieterich, J. H. (1979b),Modelling of Rock-Friction: I. Simulation of Preseismic Slip, J. Geophys. Res.84, 2169.

    Google Scholar 

  • Dieterich, J. H. (1981),Constitutive Properties of Faults with Simulated Gouge. InMechanical Behavior of Crustal Rocks, Am. Geophys Monog.24, 103.

    Google Scholar 

  • Engelder, T., andScholz, C. H. (1981),Fluid Flow Along Very Smooth Joints at Effective Pressure up to 200 Megapascals. InMechanical Behavior of Crustal Rocks, The Handin Volume (eds N. L. Carter, M. Friedman, J. M. Logan, D. W. Stearns), Am. Geophys. Un. Monog,24, Washington, D.C., 147.

  • Fletcher, J. B., andSykes, L. R. (1977),Earthquakes Related to Hydraulic Mining and Natural Seismic Activity in Western New York State, J. Geophys. Res.82, 3767.

    Google Scholar 

  • Hamilton, R. M., andHealy, J. H. (1969),Aftershocks of the Benham Nuclear Explosion, Bull. Seismol. Soc. Amer.59, 2271.

    Google Scholar 

  • Kranz, R. L., Frankel, A. D., Engelder, T., andScholz, C. H. (1979),The Permeability of Whole and Jointed Barre Granite, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr.16, 225.

    Google Scholar 

  • Lachenbruch, A. H., andSass, J. H. (1980),Heat Flow and Energetics of the San Andreas Fault Zone, J. Geophys. Res.85, 6185.

    Google Scholar 

  • Li, V. C. (1983),Estimation of In Situ Diffusivity, MIT Report No. R83-12.

  • Logan, J. M., Higgs, N. G., and Friedman, M. (1981),Laboratory Studies on Natural Gouge from the USGS No. 1 Well in the San Andreas Fault Zone. InMechanical Behavior of Crustal Rocks, Am. Geophys. Un. Monog.24, 121.

  • Nur, A., andByerlee, J. D. (1971),An Exact Effective Stress Law for Elastic Deformation of Rock With Fluids, J. Geophys. Res.76, 6414.

    Google Scholar 

  • Nur, A., andBooker, J. R. (1972),Aftershocks Caused by Pore Fluid Flow?, Science175, 885.

    Google Scholar 

  • Ohtake, M. (1974),Seismic Activity Induced by Water Injection at Matsushiro, Japan, J. Phys. Earth.22, 163.

    Google Scholar 

  • Raleigh, C. B., Healy, J. H., andBredehoeft, J. D. (1976),An Experiment in Earthquake Control at Rangely, Colorado, Science191, 1230.

    Google Scholar 

  • Raleigh, C. B. (1977),Frictional Heating, Dehydration and Earthquake Stress Drops InProc. of Conference II: Experimental Studies of Rock Friction with Application to Earthquake Prediction, U.S. Geol. Survey, Menlo Park, Calif., p. 291.

    Google Scholar 

  • Raleigh, B., andEvernden, J. (1981),Case for Low Deviatoric Stress in the Lithosphere, InMechanical Behavior of Crustal Rocks, The Handin Volume (eds N. L. Carter, M. Friedman, J. M. Logan D. W. Stearns), Am. Geophys. Un. Monog.24, Washington, D.C. 173.

  • Ruina, A. L. (1983),Slip Instability and State Variable Friction Laws, J. Geophys. Res.88, 10359.

    Google Scholar 

  • Sibson, R. H. (1973),Interactions Between Temperature and Pore-Fluid Pressure During Earthquake Faulting and a Mechanism for Partial or Total Stress Relief, Nature243, 66.

    Google Scholar 

  • Solberg, P., andByerlee, J. D. (1984),A Note on the Rate Sensitivity of Frictional Sliding of Westerly Granite, J. Geophys. Res., in press.

  • Stesky, R. M. (1978),Mechanisms of High Temperature Frictional Sliding in Westerly Granite, Can. J. Earth Sci.15, 361.

    Google Scholar 

  • Stesky, R. M., Brace, W. F., Riley, D. K., andRobin, P. Y. F. (1974),Friction in Faulted Rock at High Temperature and Pressures, Tectonophysics23, 177.

    Google Scholar 

  • Summers, R., andByerlee, J. D. (1977),A Note on the Stability of Frictional Sliding, Int. J. Rock Mech. Sci.14, 155.

    Google Scholar 

  • Talwani, P., andAcree, S. (1984),Pore Pressure Diffusion and the Mechanism of Reservoir Induced Seismicity, Pageoph (in press).

  • Tullis, T. E., andWeeks, J. D. (1984),Constitutive Behavior and Stability of Frictional Sliding of Granite, J. Geophys. Res.

  • Walsh, J. B. (1981),Effect of Pore Pressure and Confining Pressure on Fracture Permeability, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr.18, 429.

    Google Scholar 

  • Wang, C., andMao, N. (1979),Shearing of Saturated Clays in Rock Joints at High Confining Pressures, Geophys. Res. Lett.6, 825.

    Google Scholar 

  • Weeks, J. D., andTullis, T. E. (1984),Frictional Sliding of Calcite: An Interesting Variation in Constitutive Behavior, Geophys. Res. Lett., in press.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, X.J., Wang, C.Y. Instability on a weakening fault. PAGEOPH 122, 478–491 (1984). https://doi.org/10.1007/BF00874613

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00874613

Key words

Navigation