Skip to main content
Log in

Fractal reconstruction of sea-floor topography

  • Published:
pure and applied geophysics Aims and scope Submit manuscript

Abstract

Sea-floor bathymetric profiles exhibit features at many different scales of length; this suggests that they could be described as fractals. An algorithm interpolating a fractal line between points has been used to reconstruct bathymetric profiles from a few data points. In general, this fractal line has the same Fourier amplitude spectrum as real bathymetry, and, if the parameters of the interpolation are suitably chosen, it has a very similar appearance. The success of this fractal reconstruction algorithm for the sea-floor raises the possibility that it could be used to extrapolate, from data collected at one scale, the properties of the sea-floor at finer scales, and that similar techniques could be used to interpolate a surface between bathymetric profiles. The fractal character is a sign that the processes that shape the sea-floor are scale invariant and suggests that the renormalization group technique could be used to model these processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abbott, D. (1986),A Statistical Correlation Between Ridge Crest Offsets and Spreading Rate, Geophys. Res. Lett.13, 157–160.

    Google Scholar 

  • Allegre, C. J., Le Mouel, J. L. andProvost, A. (1982),Scaling Rules in Rock Fracture and Possible Implications for Earthquake Prediction, Nature297, 47–49.

    Google Scholar 

  • Barenblatt, G. I., Zhivago, A. V., Neprochnov, Yu. P., andOstrovskyi, A. A. (1984),The Fractal Dimension: A Quantitative Characteristic of Ocean Bottom Relief, Oceanology24, 695–697.

    Google Scholar 

  • Barnsley, M. F. (1987),Fractal Functions and Interpolation, Constr. Approx.2, 303–329.

    Google Scholar 

  • Barnsley, M. F., andDemko, S. (1985),Iterated Function Systems and the Global Construction of Fractals, Proc. Roy. Soc. London Ser.A 399, 243–275.

    Google Scholar 

  • Bell, T. H. (1975),Statistical Features of Sea-Floor Topography, Deep Sea Res.22, 883–892.

    Google Scholar 

  • Berry, M. V., andLewis, Z. V. (1980),On the Weierstrass-Mandelbrot Fractal Function, Proc. Roy. Soc. London. Ser.A 370, 459–484.

    Google Scholar 

  • Crough, S. T. (1987),Thermal Origin of Mid-Plate Hot Spot Swells, Geophys. J. Roy. Astr. Soc.55, 451–469.

    Google Scholar 

  • Davis, E. E., andLister, C. R. B. (1974),Fundamentals of Ridge Crest Topography, Earth Planet. Sci. Lett.21, 405–413.

    Google Scholar 

  • Detrick, R. S. (1986),Introduction to the Sea Floor Mapping Section, J. Geophys. Res.91, 3331–3333.

    Google Scholar 

  • Fox, C. G., andHayes, D. E. (1985),Quantitative Methods for Analyzing the Roughness of the Sea-Floor, Rev. Geophys. Space Phys.23, 1–48.

    Google Scholar 

  • Jarvis, G. T., andPeltier, W. R. (1980),Oceanic Bathymetry Profiles Flattened by Radiogenic Heating in a Conductive Mantle, Nature285, 649–651.

    Google Scholar 

  • King, G. (1983),The Accommodation of Large Strains in the Upper Lithosphere of the Earth and Other Solids by Self-Similar Fault Systems: The Geometrical Origin of b-Value. Pure Appl. Geophys.121, 761–815.

    Google Scholar 

  • Klitgord, K. D., andMammerickx, J. (1982),Northern East Pacific Rise: Magnetic Anomaly and Bathymetric Framework, J. Geophys. Res.87, 6725–6750.

    Google Scholar 

  • Malinverno, A. (1989),A Test of the Fractal Character of Sea-Floor Topography, Pure Appl. Geophys.131, 139–155.

    Google Scholar 

  • Mandelbrot, B. B.,The Fractal Geometry of Nature, 3rd edition (W. H. Freeman and Co., New York 1983).

    Google Scholar 

  • Mareschal, J.-C., Barnsley, M., andHardin, D. (1985),Fractal Reconstruction of Sea-Floor Topography, EOS66, 355.

    Google Scholar 

  • Oldenburg, D. W. (1975),A Physical Model for the Creation of the Lithosphere, Geophys. J. Roy. Astr. Soc.43, 425–451.

    Google Scholar 

  • Parker, R., andOldenburg, D. D. (1973),Thermal Model of Ocean Ridges, Nature Phys. Sci.242, 137–139.

    Google Scholar 

  • Parsons, B., andSclater, J. G. (1977),An Analysis of the Variation of Ocean-Floor Bathymetry and Heat Flow with Age. J. Geophys. Res.82, 803–827.

    Google Scholar 

  • Richter, F. M., andParsons, B. (1975),On the Interaction of two Scales of Convection in the Mantle, J. Geophys. Res.80, 2529–2541.

    Google Scholar 

  • Sandwell, D. T. (1984),Thermomechanical Evolution of Oceanic Fracture Zones, J. Geophys. Res.89, 11401–11413.

    Google Scholar 

  • Sandwell, D. T., andSchubert, G. (1982),Lithosphere Flexure at Fracture Zones, J. Geophys. Res.87, 4657–4667.

    Google Scholar 

  • Smalley, R. F. Jr., Turcotte, D. L., andSolla, S. A. (1985),A Renormalization Group Approach to the Stick Slip Behavior of Faults, J. Geophys. Res.90, 1894–1900.

    Google Scholar 

  • Turcotte, D. L. (1986),Fractals and Fragmentation, J. Geophys. Res.91, 1921–1926.

    Google Scholar 

  • Tolstoy, I.,Wave Propagation (McGraw Hill, New York 1973).

    Google Scholar 

  • Wilson, K. G., andKogut, J. (1974),The Renormalization Group and the ε Expansion, Phys. Rev. C.12, 75–200.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mareschal, JC. Fractal reconstruction of sea-floor topography. PAGEOPH 131, 197–210 (1989). https://doi.org/10.1007/BF00874487

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00874487

Key words

Navigation