pure and applied geophysics

, Volume 131, Issue 1–2, pp 111–138 | Cite as

The fractal geometry of flow paths in natural fractures in rock and the approach to percolation

  • D. D. Nolte
  • L. J. Pyrak-Nolte
  • N. G. W. Cook


The distributions of contact areas in single, natural fractures in quartz monzonite (Stripa granite) are found to have fractal dimensions which decrease fromD=2.00 to values nearD=1.96 as stress normal to the fractures is increased from 3 MPa up to 85 MPa. The effect of stress on fluid flow is studied in the same samples. Fluid transport through a fracture depends on two properties of the fracture void space geometry. the void aperture; and the tortuosity of the flow paths, determined through the distribution of contact area. Each of these quantities change under stress and contribute to changes observed in the flow rate. A general flow law is presented which separates these different effects. The effects of tortuosity on flow are largely governed by the proximity of the flow path distribution to a percolation threshold. A fractal model of correlated continuum percolation is presented which quantitatively reproduces the flow path geometries. The fractal dimension in this model is fit to the measured fractal dimensions of the flow systems to determine how far the flow systems are above the percolation threshold.

Key words

Fractals fractures fluid flow percolation rock mechanics geohydrology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aharony, A. (1984),Percolation, Fractals, and Anomalous Diffusion, J. Stat. Phys.34, 931–939.Google Scholar
  2. Balberg, I., Binenbaum, N., andAnderson, C. H. (1983),Critical Behavior of the Two-dimensional Sticks System, Phys. Rev. Lett.51, 1605–1608.Google Scholar
  3. Bandis, S., Lumsden, A. C., andBarton, N. R., (1983),Fundamentals of Rock Joint Deformation, Int. J. Rock Mech. Min. Sci. and Geomech. Abstr.20, 249–268.Google Scholar
  4. Böttger, H., andBryskin, V. V.,Hopping Conduction in Solids (VCH, Altenburg 1985).Google Scholar
  5. Brown, S. R., andScholz, C. H. (1985),Closure of Random Elastic Surfaces in Contact, J. Geophys. Res.90(B7), 5531–5545.Google Scholar
  6. Brown, S. R., Kranz, R. L., andBonner, B. P. (1986),Correlation between the Surfaces of Natural Rock Joints, Geophys. Res. Lett.13, 1430.Google Scholar
  7. Brown, S. R. (1987),Fluid Flow through Rock Joints: The Effect of Surface Roughness, J. Geophys. Res.92(B2), 1337–1347.Google Scholar
  8. Domb, C., andGreen, M. S. ed.,Phase Transitions and Critical Phenomena (Academic, London 1976).Google Scholar
  9. Duncan, N., andHancock, K. E. (1966),The Concept of Contact Stress in Assessment of the Behavior of Rock Masses as Structural Foundations, Proc. First Cong. Int. Soc. Rock Mech., Lisbon,2, 487–492.Google Scholar
  10. Elam, W. T., Kerstein, A. R., andRehr, J. J. (1984),Critical Properties of the Void Percolation Problems for Spheres, Phys. Rev. Lett.17, 1516–1519.Google Scholar
  11. Engelder, T., andScholz, C. H. (1981),Fluid Flow Along Very Smooth Faults at Effective Pressures up to 200 Megapascals, Am. Geophys. Union Monogr.24, 147–152.Google Scholar
  12. Essam, J. W. (1980),Percolation Theory, Rep. Prog. Phys.43, 833–912.Google Scholar
  13. Gale, J. E., andRaven, K. G. (1980),Effects of Sample Size on the Stress-permeability Relationship for Natural Fractures, Lawrence Berkeley Laboratory Report, LBL-11865 (SAC-48), Berkeley, California.Google Scholar
  14. Gawlinski, E. T., andStanley, H. E. 1981,Continuum Percolation in Two Dimensions: Monte Carlo Tests of Scaling and Universality for Noninteracting Discs, J. Phys.A4, L291-L299.Google Scholar
  15. Halperin, B. I., Feng, S., andSen, P. N. (1985),Differences between Lattice and Continuum Percolation Transport Exponents, Phys. Rev. Lett.54, 2391–2394.Google Scholar
  16. Klein, W. (1982),Potts-model Formulation of Continuum Percolation, Phys. Rev.B26, 2677–2678.Google Scholar
  17. Iwai, K. (1976),Fundamentals of Fluid Flow through a Single Fracture, Ph. D. Thesis Univ. of California, Berkeley.Google Scholar
  18. Kirkpatrick, S. (1973),Percolation and Conduction, Rev. Mod. Phys.45, 574–588.Google Scholar
  19. Ma, S-K. (1973),Introduction to the Renormalization Group, Rev. Mod. Phys.45, 589–615.Google Scholar
  20. Mandelbrot, B B.,The Fractal Geometry of Nature (W. H. Freeman, San Francisco 1983).Google Scholar
  21. Mandelbrot, B. B. (1984),Fractals in Physics: Squig Clusters, Diffusions, Fractal Measures and the Universality of Fractal Dimension, J. Stat. Phys.34, 895–930.Google Scholar
  22. Olkiewicz, A., Gale, J. E., Thorpe, R., andPaulsson, B. (1979),Geology and Fracture System at Stripa, Lawrence Berkeley Laboratory Report, LBL-8907 (SAC-21), Berkeley, California.Google Scholar
  23. Phani, M. K., andDhar, D. J. (1984),Continuum Percolation with Discs having a Distribution of Radii, Phys.A17, L645-L649.Google Scholar
  24. Pike, G. E., andSeager, C. H. (1974),Percolation and Conductivity: A Computer Study, Phys. Rev.B10, 1421–1434.Google Scholar
  25. Pyrak-Nolte, L. J., Meyer, L. R., Cook, N. G. W., andWitherspoon, P. A. (1987),Hydraulic and mechanical properties of natural fractures in low permeable rock, Proc. 6th International Congress on Rock Mechanics (eds. Herget, G., and Vongpaisal, S.) Montreal, Canada (A. A. Balkema, Rotterdam 1987) pp. 225–231.Google Scholar
  26. Pyrak-Nolte, L. J., Cook, N. G. W., andNolte, D. D. (1988),Fluid Percolation through Single Fractures, Geophys. Res. Lett.15, 1247–1250.Google Scholar
  27. Raven, K. G., andGale, J. E. (1985),Water Flow in a Natural Rock Fracture, Int. J. Rock Mech. Min. Sci. Geomech.22, 251–261.Google Scholar
  28. Reynolds, P. J., Stanley, H. E., andKlein, W. (1980),Large-cell Monte Carlo Renormalization Group for Percolation, Phys. Rev.B21, 1223–1245.Google Scholar
  29. Robinson, P. C. (1983),Connectivity of Fracture Systems: A Percolation Theory Approach, J. Phys.A16, 605–614.Google Scholar
  30. Schlifer, G. J., Klein, W., Reynolds, P. J., andStanley, H. E. (1979),Large-cell Renormalization Group for the Backbone Problem in Percolation, Phys.A12, L169-L174.Google Scholar
  31. Seager, C. H., andPike, G. E. (1974),Percolation and Conductivity: A Computer Study. II, Phys. Rev.B10, 1435–1446.Google Scholar
  32. Stanley, H. E. (1977),Cluster Shapes at the Percolation Threshold: An Effective Cluster Dimensionality and its Connection with Critical Point Exponents, J. Phys.A10, L211-L220.Google Scholar
  33. Stauffer, D. (1980),Scaling Theory of Percolation Clusters, Phys. Rep.54, 1–74.Google Scholar
  34. Tsang, Y. W., andWitherspoon, P. A. (1981),Hydromechanical Behavior of a Deformable Rock Fracture Subject to Normal Stress, J. Geophys. Res.86, 9287–9298.Google Scholar
  35. Tsang, Y. W. (1984),The Effect of Tortuosity on Fluid Flow through a Single Fracture, Wat. Resources Res.20, 1209–1215.Google Scholar
  36. Tuthill, G. F., andKlein, W. (1986),Renormalization Group for Percolation Using Correlation Parameters, J. Phys.A16 3561–3570.Google Scholar
  37. Vicsek, T., andKertesz, J. (1981),Monte Carlo Renormalization Group Approach to Percolation on a Continuum: Test of Universality, J. Phys.A14, L31-L37.Google Scholar
  38. Voss, R. F. (1984),The Fractal Dimension of Percolation Cluster Hulls, J. Phys.A17, L373-L377.Google Scholar
  39. Walsh, J. B. (1981),Effect of Pore Pressure and Confining Pressure on Fracture Permeability, Int. J. Rock Mech. Min. Sci. Geomech. Abstr.18, 429–435.Google Scholar
  40. Witherspoon, P. A., Wang, Y. S., Iwai, K., andGale, J. E. (1980),Validity of Cubic Law for Fluid Flow in a Deformable Rock Fracture, Wat. Resources Res.16, 1016–1024.Google Scholar

Copyright information

© Birkhäuser-Verlag 1989

Authors and Affiliations

  • D. D. Nolte
    • 1
  • L. J. Pyrak-Nolte
    • 2
  • N. G. W. Cook
    • 2
  1. 1.Department of PhysicsUniversity of CaliforniaBerkeleyUSA
  2. 2.Department of Material Science and Mineral EngineeringUniversity of CaliforniaBerkeleyUSA

Personalised recommendations