Skip to main content
Log in

A review of gravity wave saturation processes, effects, and variability in the middle atmosphere

  • Published:
pure and applied geophysics Aims and scope Submit manuscript

Abstract

This paper provides a review of our current understanding of the processes responsible for gravity wave saturation as well as the principal effects and variability of saturation in the lower and middle atmosphere. We discuss the theoretical and observational evidence for linear and nonlinear saturation processes and examine the consequences of saturation for wave amplitude limits, momentum and energy fluxes, the diffusion of heat and constituents, and the establishment of a near-universal vertical wavenumber spectrum. Recent studies of gravity wave variability are reviewed and are seen to provide insights into the significant causes of wave variability throughout the atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Avery, S. K., andB. B. Balsley (1989),Gravity wave momentum flux measurements in the lower and upper atmosphere using the Poker Flat, Alaska MST radar, J. Geophys.Res., in press.

  • Balsley, B. B., andD. A. Carter (1982),The spectrum of atmospheric velocity fluctuations at 8 and 86 km, Geophys. Res. Lett.9, 456–468.

    Google Scholar 

  • Balsley, B. B., W. L. Ecklund, andD. C. Fritts (1983),VHF echoes from the high-latitude mesosphere and lower thermosphere: Observations and interpretations, J. Atmos. Sci.40, 2451–2466.

    Google Scholar 

  • Balsley, B. B., andR. Garello (1985),The kinetic energy density in the troposphere, stratosphere and mesosphere: A preliminary study using the Poker Flat radar in Alaska, Radio Sci.20, 1355–1362.

    Google Scholar 

  • Bjarnason, G. G., S. Solomon, andR. R. Garcia (1987),Tidal influences on vertical diffusion and diurnal variability of ozone in the mesosphere, J. Geophys. Res.92, 5609–5620.

    Google Scholar 

  • Bretherton, F. P. (1969),Momentum transfer by gravity waves, Q. J. Roy. Meteor. Soc.95, 213–243.

    Google Scholar 

  • Chao, W. C., andM. R. Schoeberl (1984),A note on the linear approximation of gravity wave saturation in the mesosphere, J. Atmos. Sci.41, 1893–1898.

    Google Scholar 

  • Chunchuzov, Y. P. (1971),The interaction of internal waves with the mean wind in the upper atmosphere, Izvestia, Atmos. and Ocean. Phys.7, 1090–1092.

    Google Scholar 

  • Cot, C., andJ. Barat (1986),Wave turbulence interaction in the stratosphere—A case study, J. Geophys. Res.91, 2749–2756.

    Google Scholar 

  • Coy, L., andD. C. Fritts (1988),Gravity wave heat fluxes: A Lagrangian approach, J. Atmos. Sci.45, 1770–1780.

    Google Scholar 

  • Desaubies, Y. J. F. (1976),Analytical representation of internal wave spectra, J. Phys. Oceanogr.6, 976–981.

    Google Scholar 

  • Dewan, E. M., andR. E. Good (1986),Saturation and the “universal” spectrum for vertical profiles of horizontal scalar winds in the atmosphere, J. Geophys. Res.91, 2742–2748.

    Google Scholar 

  • Dewan, E. M., N. Grossbard, A. F. Quesada, andR. E. Good (1984),Spectral analysis of 10 m resolution scalar velocity profiles in the stratosphere, Geophys. Res. Lett.11, 80–83, andCorrection to “Spectral analysis of..’, Geophys. Res. Lett.11, 624.

    Google Scholar 

  • Dong, B., andK. C. Yeh (1988),Resonant and nonresonant wave-wave interactions in an isothermal atmosphere, J. Geophys. Res.93, 3729–3744.

    Google Scholar 

  • Dunkerton, T. J. (1982),Stochastic parameterization of gravity wave stresses, J. Atmos. Sci.39, 1711–1725.

    Google Scholar 

  • Dunkerton, T. J. (1984),Inertia-gravity waves in the stratosphere, J. Atmos. Sci.,41, 3396–3404.

    Google Scholar 

  • Dunkerton, T. J. (1987),Effect of nonlinear instability on gravity wave momentum transport, J. Atmos. Sci.44, 3188–3209.

    Google Scholar 

  • Dunkerton, T. J., andN. Butchart (1984),Propagation and selective transmission of gravity waves in a sudden warming, J. Atmos. Sci.41, 1443–1460.

    Google Scholar 

  • Ecklund, W. L., K. S. Gage, B. B. Balsley, R. G. Strauch, andJ. L. Green (1982),Vertical wind variability observed by VHF radar in the lee of the Colorado Rockies, Mon. Wea. Rev.110, 1451–1457.

    Google Scholar 

  • Ecklund, W. L., K. S. Gage, G. D. Nastrom, andB. B. Balsley (1986),A preliminary climatology of the spectrum of vertical velocity observed by clear-air Doppler radar, J. Clim. Appl. Meteor.25, 885–892.

    Google Scholar 

  • Endlich, R. M., R. C. Singleton, andJ. W. Kaufman (1969),Spectral analysis of detailed vertical wind speed profiles, J. Atmos. Sci.26, 1030–1041.

    Google Scholar 

  • Fritts, D. C. (1984),Gravity wave saturation in the middle atmosphere: A review of theory and observations, Rev. Geophys. Space Phys.22, 275–308.

    Google Scholar 

  • Fritts, D. C. (1985),A numerical study of gravity wave saturation: Nonlinear and multiple wave effects, J. Atmos. Sci.42, 2043–2058.

    Google Scholar 

  • Fritts, D. C., andH.-G. Chou (1987),An investigation of the vertical wavenumber and frequency spectra of gravity wave motions in the lower stratosphere, J. Atmos. Sci.44, 3610–3624.

    Google Scholar 

  • Fritts, D. C., andT. J. Dunkerton (1985),Fluxes of heat and constituents due to convectively unstable gravity waves, J. Atmos. Sci.42, 549–556.

    Google Scholar 

  • Fritts, D. C., andP. K. Rastogi (1985),Convective and dynamical instabilites due to gravity wave motions in the lower and middle atmosphere: Theory and observations, Radio Sci.20, 1247–1277.

    Google Scholar 

  • Fritts, A. D., S. A. Smith, B. B. Balsley, andC. R. Philbrick (1988b),Evidence of gravity wave saturation and local turbulence production in the summer mesosphere and lower thermosphere during the STATE experiment, J. Geophys. Res.93, 7015–7025.

    Google Scholar 

  • Fritts, D. C., T. Tsuda, T. Sato, S. Fukao, andS. Kato (1988a),Observational evidence of a saturated gravity wave spectrum in the troposphere and lower stratosphere, J. Atmos. Sci.45, 1741–1759.

    Google Scholar 

  • Fritts, D. C., T. Tsuda, T. E. Van Zandt, S. A. Smith, T. Sato, S. Fukao, andS. Kato (1989),An investigation of the momentum flux due to gravity wave motions in the troposphere and lower stratosphere using the MU Radar, submitted to J. Atmos. Sci.

  • Fritts, D. C., andR. A. Vincent (1987),Mesospheric momentum flux studies at Adelaide, Australia. Observations and a gravity wave/tidal interaction model, J. Atmos. Sci.44, 605–619.

    Google Scholar 

  • Gage, K. S. (1979),Evidence for k−5/3 power law inertial range in mesoscale two-dimensional turbulence, J. Atmos. Sci.36, 1950–1954.

    Google Scholar 

  • Gage, K. S., andB. B. Balsley (1984),MST radar studies of wind and turbulence in the middle atmosphere, J. Atmos. Terres. Phys.46, 739–753.

    Google Scholar 

  • Garcia, R. R., andS. Solomon (1985),The effect of breaking gravity waves on the dynamical and chemical composition of the mesosphere and lower thermosphere, J. Geophys. Res.90, 3850–3868.

    Google Scholar 

  • Garrett, C. J. R., andW. H. Munk (1972),Space-time scales of internal waves, Geophys. Astrophys. Fluid Dyn.3, 225–235.

    Google Scholar 

  • Garrett, C. J. R., andW. H. Munk (1975),Space-time scales of internal waves: A progress report, J. Geophys. Res.80, 291–297.

    Google Scholar 

  • Hasselmann, K. (1967),A criterion for nonlinear wave stability, J. Fluid Mech.30, 737–739.

    Google Scholar 

  • Hines, C. O. (1960),Internal gravity waves at ionospheric heights, Can. J. Phys.38, 1441–1481.

    Google Scholar 

  • Hines, C. O. (1971),Generalizations of the Richardson criterion for the onset of atmospheric turbulence, Quart. J Roy. Met. Soc.97, 429–439.

    Google Scholar 

  • Hines, C. O. (1972),Momentum deposition by atmospheric waves, and its effects on thermospheric circulation, Space Res.12, 1157.

    Google Scholar 

  • Hines, C. O. (1988),The generation of turbulence by atmospheric gravity waves, J. Atmos. Sci.45, 1269–1278.

    Google Scholar 

  • Hocking, W. K. (1983),Mesospheric turbulence intensities measured with a HF radar at 35°S, II, J. Atmos. Terr. Phys.45, 103–114.

    Google Scholar 

  • Hocking, W. K. (1987),Radar studies of small scale structure in the upper middle atmosphere and lower ionosphere, Adv. Space Res., in press.

  • Hodges, R. R., Jr. (1967),Generation of turbulence in the upper atmosphere by internal gravity waves, J. Geophys. Res.72, 3455–3458.

    Google Scholar 

  • Hodges, R. R., Jr. (1969),Eddy diffusion coefficients due to instabilities in internal gravity waves, J. Geophys. Res.74, 4087–4090.

    Google Scholar 

  • Holton, J. R. (1982),The role of gravity wave-induced drag and diffusion in the momentum budget of the mesosphere, J. Atmos. Sci.39, 791–799.

    Google Scholar 

  • Holton, J. R. (1983),The influence of gravity wave breaking on the general circulation of the middle atmosphere, J. Atmos. Sci.40, 2497–2507.

    Google Scholar 

  • Holton, J. R. (1984),The generation of mesopheric planetary waves by zonally asymmetric gravity wave breaking, J. Atmos. Sci.41, 3427–3430.

    Google Scholar 

  • Holton, J. R., andX. Zhu (1984),A further study of gravity wave induced drag and diffusion in the mesosphere, J. Atmos. Sci.41, 2653–2662.

    Google Scholar 

  • Houghton, J. T. (1978),The stratosphere and mesophere, Q. J. Roy. Meteor. Soc.104, 1–29.

    Google Scholar 

  • Inhester, B. (1987),The effect of inhomogeneities on the resonant parametric interaction of gravity waves in the atmosphere, Ann. Geophys5, 209–218.

    Google Scholar 

  • Klostermeyer, J. (1982),On parametric instabilities of finite amplitude internal gravity waves, J. Fluid Mech.119, 367–377.

    Google Scholar 

  • Klostermeyer, J. (1984),Observations indicating parametric instabilities in internal gravity waves at thermospheric heights, Geophy. Astrophys. Fluid Dyn.29, 117–138.

    Google Scholar 

  • Klostermeyer, J., andR. Ruster (1984),VHF radar observations of wave instability and turbulence in the mesosphere, Adv. Space Res.4, 79–82.

    Google Scholar 

  • Labitzke, K., A. H. Manson, J. J. Barnett, andM. Corney (1987),Comparison of geostrophic and observed winds in the upper mesosphere over Saskatoon, Canada, J. Atmos. Terres. Phys.49, 987–997.

    Google Scholar 

  • Larsen, M. F., andJ. Rottger (1982),VHF and UHF Doppler radars as tools for synoptic research, Bull. Am. Met. Soc.63, 996–1008.

    Google Scholar 

  • Lilly, D. K. (1972),Wave momentum flux—A GARP problem, Bull. Am. Meteor. Soc.53, 17–23.

    Google Scholar 

  • Lilly, D. K. (1978),A severe downslope windstorm and aircraft turbulence induced by a mountain wave, J. Atmos. Sci.35, 59–77.

    Google Scholar 

  • Lilly, D. K. (1983),Stratified turbulence and the mesoscale variability of the atmosphere, J. Atmos. Sci.40, 749–761.

    Google Scholar 

  • Lilly, D. K., andP. J. Kennedy (1973),Observations of a stationary mountain wave and its associated momentum flux and energy dissipation, J. Atmos. Sci.30, 1135–1152.

    Google Scholar 

  • Lilly, D. K., andP. F. Lester (1974),Waves and turbulence in the stratosphere, J. Atmos. Sci.31, 800–811.

    Google Scholar 

  • Lindzen, R. S. (1981),Turbulence and stress owing to gravity wave and tidal breakdown, J. Geophys. Res.86, 9707–9714.

    Google Scholar 

  • Lindzen, R. S. (1984),Gravity waves in the mesosphere, inDynamics of the Middle Atmosphere (J. R. Holton and T. Matsuno, eds.) (D. Reidel Publ. Co.) pp. 3–18.

  • Lindzen, R. S. (1985),Multiple gravity wave breaking levels, J. Atmos. Sci.42, 301–305.

    Google Scholar 

  • Long, R. R. (1955),Some aspects of the flow of stratified fluids. III: Continuous density gradients, Tellus7, 341–357.

    Google Scholar 

  • Lumley, (1964),The spectrum of nearly inertial turbulence in a stably stratified fluid, J. Atmos. Sci.21, 99–102.

    Google Scholar 

  • McComas, C. H., andF. P. Bretherton (1977),Resonant interaction of oceanic internal waves, J. Geophys. Res.82, 1397–1412.

    Google Scholar 

  • McFarlane, N. A. (1987),The effect of orographically excited gravity wave drag on the general circulation of the lower stratosphere and troposphere, J. Atmos. Sci.44, 1775–1800.

    Google Scholar 

  • Meek, C. E., I. M. Reid, andA. H. Manson (1985a),Observations of mesospheric wind velocities. II. Cross-sections of power spectral density for 48-8h, 8-1h, 1h-10 min over 60–110 km for 1981, Radio Sci.20, 1383–1402.

    Google Scholar 

  • Meek, C. E., I. M. Reid, andA. H. Manson (1985b),Observations of mesospheric wind velocities. I. Gravity wave horizontal scales and phase velocities determined from spaced wind observations, Radio Sci.20, 1383–1402.

    Google Scholar 

  • Mied, R. P. (1976),The occurrence of parametric instabilities in finite amplitude internal gravity waves, J. Fluid Mech.78, 763–784.

    Google Scholar 

  • Miyahara, S., Y. Hayashi, andJ. D. Mahlman (1986),Interactions between gravity waves and the planetary scale flow simulated by the GFDL “SKYHI” general circulation model, J. Atmos. Sci.,43, 1844–1861.

    Google Scholar 

  • Muller, P., G. Holloway, F. Henyey, andN. Pomphrey (1986),Nonlinear interactions among internal gravity waves, Rev. Geophys.24, 493–536.

    Google Scholar 

  • Nastrom, G. D., B. B. Balsley, andD. A. Carter (1982),Mean meridional winds in the mid- and high-latitude summer mesosphere, Geophys. Res. Lett.9, 139–142.

    Google Scholar 

  • Nastrom, G. D., D. C. Fritts, andK. S. Gage (1987),An investigation of terrain effects on the mesoscale spectrum of atmospheric motions, J. Atmos. Sci.44, 3087–3096.

    Google Scholar 

  • Newton, C. W. (1971),Mountain torques in the global angular momentum balance, J. Atmos. Sci.28, 623–628.

    Google Scholar 

  • Palmer, T. N., G. J. Shutts, andR. Swinbank (1986),Alleviation of a systematic westerly bias in general circulation and numerical weather prediction models through an orographic gravity wave drag parameterization, Quart. J. Roy. Met. Soc.112, 1001–1040.

    Google Scholar 

  • Reid, I. M. (1986),Gravity wave motions in the upper middle atmosphere (60–110 km), J. Atmos. Terr. Phys.48, 1057–1072.

    Google Scholar 

  • Reid, I. M., R. Rüster, andG. Schmidt (1987),VHF radar observations of cat's-eye-like structures at mesospheric heights, Nature327, 43–45.

    Google Scholar 

  • Reid, I. M., andR. A. Vincent (1987a),Measurements of mesospheric gravity wave momentum fluxes and mean flow accelerations at Adelaide, Australia, J. Atmos. Terr. Phys.49, 443–460.

    Google Scholar 

  • Reid, I. M., andR. A. Vincent (1987b),Measurements of the horizontal scales and phase velocities of short period mesospheric gravity waves at Adelaide, Australia, J. Atmos. Terr. Phys.49, 1033–1048.

    Google Scholar 

  • Rind, D., R. Suozzo, N. K. Balachandran, A. Lacis, andG. Russell (1988),The GISS global climate/middle atmosphere model with parameterized gravity wave drag, submitted to J. Atmos. Sci.

  • Rottger, J. (1987),The relation of gravity waves and turbulence in the mesosphere, Adv. Space Res., in press.

  • Rüster, R. (1984),Winds and waves in the middle atmosphere as observed by ground-based radars, Adv. Space Res.4, 3–18.

    Google Scholar 

  • Schoeberl, M. R., andD. F. Strobel (1984),Nonzonal gravity wave breaking in the winter mesosphere, inDynamics of the Middle Atmosphere (J. R. Holton and T. Matsuno, eds.) (D. Reidel Publ. Co.) pp. 45–64.

  • Schoeberl, M. R., D. F. Strobel, andJ. P. Apruzese (1983),A numerical model of gravity wave breaking and stress in the middle atmosphere, J. Geophys. Res.88, 5249–5259.

    Google Scholar 

  • Sidi, C., andJ. Barat (1986),Observational evidence of an inertial wind structure in the stratosphere, J. Geophys. Res.91, 1209–1217.

    Google Scholar 

  • Sidi, C., J. Lefrere, F. Dalaudier, andJ. Barat (1988),An improved atmospheric buoyancy wave spectrum model, J. Geophys. Res.93, 774–790.

    Google Scholar 

  • Smith, A. K., andL. V. Lyjak (1985),An observational estimate of gravity wave drag from the momentum balance in the middle atmosphere, J. Geophys. Res.90, 2233–2241.

    Google Scholar 

  • Smith, S. A., D. C. Fritts, andT. E. VanZandt (1987),Evidence of a saturation spectrum of atmospheric gravity waves, J. Atmos. Sci.44, 1404–1410.

    Google Scholar 

  • Strobel, D. F., J. P. Apruzese, andM. R. Schoeberl (1985),Energy balance constraints on gravity wave induced eddy diffusion in the mesosphere and lower thermosphere, J. Geophys. Res.90, 13,067–13,072.

    Google Scholar 

  • Strobel, D. F., M. E. Summers, R. M. Bevilacqua, M. T. DeLand, andM. Allen (1987),Vertical constituent transport in the mesosphere, J. Geophys. Res.192, 6691–6698.

    Google Scholar 

  • Tanaka, H. (1986),A slowly varying model of the lower stratospheric zonal wind minimum induced by mesoscale mountain wave breakdown, J. Atmos. Sci.43, 1881–1892.

    Google Scholar 

  • Thomas, R. J., C. A. Barth, andS. Solomon (1984),Seasonal variations of ozone in the upper mesosphere and gravity waves, Geophys. Res. Lett.7, 673–676.

    Google Scholar 

  • Thrane, E. V., O. Andreasen, T. Blix, B. Grandal, A. Brekke, C. R. Philbrick, F. J. Schmidlin, H. U. Widdel, U. Von Zahn, andF. J. Luebken (1985),Neutral air turbulence in the upper atmosphere, J. Atmos. Terr. Phys.47, 243–265.

    Google Scholar 

  • Tsuda, T., K. Hirose, S. Kato, andM. P. Sulzer (1985),Some findings on correlation between the stratospheric echo power and the wind shear observed by the Arecibo UHF radar, Radio Sci.20, 1503–1508.

    Google Scholar 

  • VanZandt, T. E. (1982),A universal spectrum of buoyancy waves in the atmosphere, Geophys. Res. Lett.9, 575–578.

    Google Scholar 

  • VanZandt, T. E. (1985),A model for gravity wave spectra observed by Doppler sounding systems, Radio Sci.20, 1323–1330.

    Google Scholar 

  • VanZandt, T. E., andD. C. Fritts (1989),A theory of enchanced saturation of the gravity wave spectrum due to increases in atmospheric stability, Pure Appl. Geophys.131 (2/3), 399–420.

    Google Scholar 

  • Vincent, R. A., andD. C. Fritts (1987),A morphology of gravity waves in the mesosphere and lower thermosphere over Adelaide, Australia, J. Atmos. Sci.44, 748–760.

    Google Scholar 

  • Vincent, R. A., andI. M. Reid (1983),HF Doppler measurements of mesospheric momentum fluxes, J. Atmos. Sci.40, 1321–1333.

    Google Scholar 

  • Walterscheid, R. L. (1981),Dynamical cooling induced by dissipating internal gravity waves, Geophys. Res. Lett.8, 1235–1238.

    Google Scholar 

  • Watkins, B. J., C. R. Philbrick, andB. B. Balsley (1988),Turbulence energy dissipation rates and inner scale sizes from rocket and radar data, J. Geophys. Res.93, 7009–7014.

    Google Scholar 

  • Weinstock, J. (1982),Nonlinear theory of gravity waves: Momentum deposition, generalized Rayleigh friction, and diffusion, J. Atmos. Sci.39, 1698–1710.

    Google Scholar 

  • Weinstock, J. (1983),Heat flux induced by gravity waves, Geophys. Res. Lett.10, 165–167.

    Google Scholar 

  • Weinstock, J. (1985),Theoretical gravity wave spectra in the atmosphere: Strong and weak interactions, Radio Sci.20, 1295–1300.

    Google Scholar 

  • Yamamoto, M., T. Tsuda, S. Kato, T. Sato, andS. Fukao (1987),Interpretation of structure of mesospheric turbulent scattering layers in terms of inertial gravity waves, Physica Scripta, submitted.

  • Yeh, K. C., andC. H. Liu (1981),The instability of atmospheric gravity waves through wave-wave interactions, J. Geophys. Res.86, 9722–9728.

    Google Scholar 

  • Yeh, K. C., andC. H. Liu, (1985),Evolution of atmospheric spectrum by processes of wave-wave interaction, Radio Sci.20, 1279–1294.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fritts, D.C. A review of gravity wave saturation processes, effects, and variability in the middle atmosphere. PAGEOPH 130, 343–371 (1989). https://doi.org/10.1007/BF00874464

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00874464

Key words

Navigation