Skip to main content
Log in

Studies of coda using array and three-component processing

  • Published:
pure and applied geophysics Aims and scope Submit manuscript

Abstract

The application of standard array processing techniques to the study of coda presents difficulties due to the design criteria of these techniques. Typically the techniques are designed to analyze isolated, short arrivals with definite phase velocity and azimuth and have been useful in the frequency range around 1 Hz. Coda is long in time and may contain waves of different types, phase velocities and azimuths. Nonetheless, it has proved possible to use or adapt array methods to answer two questions: what types of waves are present in coda and where are they scattered? Most work has been carried out on teleseismicP coda; work on local coda has lagged due to lack of suitable data and the difficulties of dealing with high frequencies. The time domain methods of beamforming and Vespagram analysis have shown that there is coherent energy with a high phase velocity comparable toP orPP in teleseismicP coda. These methods can detect this “coherent” coda because it has a fairly definite phase velocity and the same, or close to, azimuth as firstP orPP. This component must consist ofP waves and is either scattered near the source, or reflected in the mantle path as apdpP or precursorPP reflection. The Fourier transform method of the frequency-wavenumber spectrum has been adapted by integrating around circles of constant phase velocity (constant total wavenumber) to produce the wavenumber spectrum, which shows power as a function of wavenumber, or phase velocity. For teleseismicP coda, wavenumber spectra demonstrate that there is a “diffuse” coda of shear,Lg or surface waves scattered from teleseismicP near the receiver. Wavenumber spectra also suggest that the coherent coda is produced by near-source scattering in the crust, not mantle reflection, since it is absent or weak for deep-focus events. Crustal earthquakes have a very strong coherent component of teleseismic coda, suggesting scattering from shear to teleseismicP near the source. Three-component analysis of single-station data has shown the presence of off-azimuth arrivals and may lead to the identification of waves scattered from a single scatterer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aki, K. (1969),Analysis of the Seismic Coda of Local Earthquakes: Source, Attenuation and Scattering Effects, J. Geophys. Res.74, 615–631.

    Google Scholar 

  • Aki, K. (1973),Scattering of P Waves under the Montana LASA, J. Geophys. Res.78, 1334–1346.

    Google Scholar 

  • Aki, K., andRichards, P. G.,Quantitative Seismology. Theory and Methods (W. H. Freeman and Co., San Francisco 1980).

    Google Scholar 

  • Aki, K., andTsujiura, M. (1959),Correlation Study of near Earthquake Waves, Bull. Earthq. Res. Inst. Tokyo Univ.37, 207–232.

    Google Scholar 

  • Berteussen, K. A., Christoffersson, A., Husebye, E. S., andDahle, A. (1975),Wave Scattering Theory in Analysis of P-wave Anomalies at NORSAR and LASA, Geophys. J. Roy. Astron. Soc.42, 403–417.

    Google Scholar 

  • Bolt, B. A., O'Neill, M., andQamar, A. (1968),Seismic Waves near 110°: Is Structure in Core Upper Mantle Responsible?, Geophys. J. Roy. Astron. Soc.16, 475–487.

    Google Scholar 

  • Bolt, B. A., Tsai, Y. B., Yeh, K., andHsu, M. K. (1982),Earthquake Strong Motions Recorded by a Large Near-source Array of Digital Seismographs, Earthq. Eng. Struct. Dyn.10, 561–573.

    Google Scholar 

  • Bungum, H., Mykkeltveit, S., andKvaerna, T. (1985),Seismic Noise in Fennoscandia, with Emphasis on High Frequencies, Bull. Seismol. Soc. Am.75, 1489–1513.

    Google Scholar 

  • Capon, J. (1969),High-Resolution Frequency-wave Number Spectrum Analysis, Proc. IEEE57, 1408–1418.

    Google Scholar 

  • Capon, J. (1974),Characterization of Crust and Upper Mantle Structure under LASA as a Random Medium, Bull. Seismol. Soc. Am.64, 235–266.

    Google Scholar 

  • Chernov, L. A.,Wave Propagation in a Random Medium (McGraw-Hill, New York 1960).

    Google Scholar 

  • Christoffersson, A., Husebye, E. S., andIngate, S. F. (1985),Fingerprinting Mother Earth: 3-component Seismogram Analysis, 7th Ann. DARPA/AFGL Seismic Res. Symp. Proc. 434–466, Air Force Geophysics Laboratory, Hanscom AFB, Massachusetts, USA

  • Christoffersson, A., Husebye, E. S., andIngate, S. F. (1988),Wavefield Decomposition Using ML-probabilities in Modelling Single-site 3-component Records, Geophys. J. Roy. Astron. Soc.93, 197–213.

    Google Scholar 

  • Dainty, A. M. (1985),Coda Observed at NORSAR and NORESS, Final Report, AFGL-TF-86-0218, TEIC No. ADA166454, Air Force Geophysics Laboratory, Hanscom AFG, Massachusetts, USA

    Google Scholar 

  • Dainty, A. M., andHarris, D. B. (1988),Phase Velocity Estimation of Diffusely Scattered Waves, Bull-Seismol. Soc. Am., in press.

  • Davies, E., Kelly, E. J., andFilson, J. R. (1971),Vespa Process for Analysis of Seismic Signals, Nature Phys. Sci.232, 8–13.

    Google Scholar 

  • Der, Z. A., Shumway, R. H., andLees, A. C. (1987),Multi-channel Decomvolution of P Waves at Seismic Arrays, Bull. Seismol. Soc. Am.77, 195–211.

    Google Scholar 

  • Green, P. E., Frosch, R. A., andRomney, C. F. (1965),Principles of an Experimental Large Aperture Seismic Array (LASA). Proc. IEEE53, 1821–1833.

    Google Scholar 

  • Greenfield, R. J. (1971),Short-period P-wave Generation by Rayleigh-wave Scattering at Novaya Zemlya. J. Geophys. Res.76, 7988–8002.

    Google Scholar 

  • Husebye, E. S., andMadariaga, R. (1970),The Origin of Precursors to Core Waves, Bull. Seismol. Soc. Am.60, 939–952.

    Google Scholar 

  • Ingate, S. F., Husebye, E. S., andChristoffersson, A. (1985),Regional Arrays and Processing Schemes. Bull. Seismol. Soc. Am.75, 1155–1177.

    Google Scholar 

  • Key, F. A. (1967),Signal-generated Noise at the Eskdalemuir seismometer Array Station, Bull. Seismol. Soc. Am.57, 27–37.

    Google Scholar 

  • King, D. W., Haddon, R. A. W., andHusebye, E. S. (1975),Precursors to PP, Phys. Earth Planet. Int.10, 103–127.

    Google Scholar 

  • Lacoss, R. T., Kelly, E. J., andToksöz, M. N. (1969),Estimation of Noise Structure Using Arrays, Geophysics34, 21–38.

    Google Scholar 

  • McLaughlin, K. L., Anderson, L. M., andLees, A. C. (1987),Effects of Local Geologic Structure on Yucca Flats, Nevada Test Site, Waveforms: Two-dimensional Linear Finite-difference Simulations, Bull. Seismol. Soc. Am.77, 1211–1222.

    Google Scholar 

  • Nawab, S. H., Dowla, F. U., andLacoss, R. T. (1985),Direction Determination of Wideband Signals, IEEE Trans.ASSP-33, 1114–1122.

    Google Scholar 

  • Ringdal, F., andHusebye, E. S. (1982),Application of Arrays in the Detection, Location, and Identification of Seismic Events, Bull. Seismol. Soc. Am.72, S201-S224.

    Google Scholar 

  • Ruud, B. O., Husebye, E. S., Ingate, S. F., andChristoffersson, A. (1988),Event Location at Any Distance Using Seismic Data from a Single, Three-component Station, Bull. Seismol. Soc. Am.78, 308–315.

    Google Scholar 

  • Spudich, P., andBostwick, T. (1986),Studies of the Seismic Coda Using an Earthquake Cluster as a Buried Seismic Array, EOS Trans. Am. Geophys. Un.67, 1097–1098 (abs.).

    Google Scholar 

  • Spudich, P., andCranswick, E. (1984),Direct Observation of Rupture Propagation during the 1979 Imperial Valley Earthquake Using a Short Baseline Accelerometer Array. Bull. Seismol. Soc. Am.74, 2083–2114.

    Google Scholar 

  • Wright, C., andMuirhead, K. J. (1969),Longitudinal Waves from the Novaya Zemlya Nuclear Explosion of October 27, 1966, Recorded at the Warramunga Seismic Array, J. Geophys. Res.74, 2034–2047.

    Google Scholar 

  • Wu, R.-S., andAki, K. (1985),Elastic Wave Scattering by a Random Medium and the Small-scale Inhomogeneities of the Lithosphere, J. Geophys. Res.90, 10261–10273.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dainty, A.M. Studies of coda using array and three-component processing. PAGEOPH 132, 221–244 (1990). https://doi.org/10.1007/BF00874364

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00874364

Key words

Navigation