Advertisement

pure and applied geophysics

, Volume 132, Issue 1–2, pp 175–196 | Cite as

Transmission fluctuations across an array and heterogeneities in the crust and upper mantle

  • Ru-Shan Wu
  • Stanley M. Flatté
Article

Abstract

Adopting the spectral approach, we derive the formulation of angular coherence and transverse coherence of transmission fluctuations. Our derivation and results provide new insight on transmission fluctuation analysis. A review of research work on fluctuation analysis using observations at large seismic arrays such as LASA and NORSAR-follows. We point out that the model of a single-layer Gaussian medium cannot explain the angular coherence of NORSAR data and a more general model of a non-Gaussian, multi-scale, vertically inhomogeneous random media is needed. The model of a two-layer power-law medium proposed by Flatté and Wu is among the simplest of such models.

Key words

Wave propagation seismic waves heterogeneities lithosphere 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aki, K. (1973),Scattering of P Waves under the Montana Lasa, J. Geophys. Res.78, 1334–1246.Google Scholar
  2. Aki, K., andRichards, P. G.,Quantitative Seismology, vol. 2 (W. H. Freeman, San Francisco 1980).Google Scholar
  3. Berteussen, K. A. (1975),Crustal Structure and P-wave Travel Time Anomalies at MORSAR, J. Geophys.41, 71–84.Google Scholar
  4. Berteussen, K. A., Christoffersson, A., Husebye, E. S., andDahle, A. (1975),Wave Scattering Theory in Analysis of P Wave Anomalies at NORSAR and LASA, Geophys. J. R. Astr. Soc.42, 402–417.Google Scholar
  5. Berteussen, K. A., Husebye, E. S., Mereu, R. F., andRam, A. (1977),Quantitative Assessment of the Crust-upper Mantle Heterogeneities Beneath the Gauribidanur Seismic Array in Southern India, Earth and Planet. Sci. Lett.37, 326–332.Google Scholar
  6. Capon, J. (1974),Characterization of Crust and Upper Mantle Structure under LASA as a Random Medium, Bull. Seismol. Soc. Am.64, 235–266.Google Scholar
  7. Capon, J., andBerteussen, K. A. (1974),A Random Medium Analysis of Crust and Upper Mantle Structure under NORSAR, Geophys. Res. Lett.1, 327–328.Google Scholar
  8. Chernov, L. A.,Wave Propagation in a Random Medium (McGraw-Hill, New York 1960).Google Scholar
  9. Flatté, S. M., Dashen, R., Munk, W. H., Watson, K. M., andZachariasen, F.,Sound Transmission Through a Fluctuating Ocean, (Cambridge University Press, New York 1970).Google Scholar
  10. Flatté, S. M., Wu, R.-S., andShen, Z. K. (1987),Inversion of the Medium Spectrum under NORSAR from Phase and Amplitude Fluctuations of Seismic P-waves, Spring, American Geophysical Union Meeting, abstract.Google Scholar
  11. Flatté, S. M., Martin, J. M., andWu, R.-S. (1988),Numerical Simulation of High-Frequency Teleseismic Waves Transmitted Through the Lithosphere to a Large Array, Fall, American Geophysical Union Meeting, abstract.Google Scholar
  12. Flatté, S. M., andWu, R.-S. (1988),Small-scale Structure in the Lithosphere and Asthenosphere Deduced from Arrival-time and Amplitude Fluctuations at NORSAR, J. Geophys. Res.93, 6601–6614.Google Scholar
  13. Ishimaru, A.,Wave Propagation and Scattering in Random Media, Vol. II (Academic Press, New York 1978).Google Scholar
  14. Martin, J. M., andFlatté, S. M. (1988),Intensity Images and Statistics from Numerical Simulation of Wave Propagation in 3-D Random Media, Appl. Optics27, 2111–2126.Google Scholar
  15. Matsunami, K. (1989),Laboratory Measurements of Attenuation and Fluctuation of Elastic Waves Due to Scattering by Random Heterogeneities Pure Appl. Geophys.132, 197–220.Google Scholar
  16. Munk, W. H. andZachariasen, F. (1976),Sound Propagation Through a Fluctuating Ocean—Theory and Observation, J. Acous. Soc. Am.59, 818–838.Google Scholar
  17. Nikolaev, A. V.,The Seismics of Heterogeneous and Turbid Media (translated from Russian) (Nauka, Moscow 1972).Google Scholar
  18. Nowack, R. L., andAki, K. (1986),Iterative Inversion for Velocity Using Wavefrom Data, Geophys. J. R. Astr. Soc.87, 701–730.Google Scholar
  19. Sato, H. (1979),Wave Propagation in One-dimensional Inhomogeneous Elastic Media, J. Phys. Earth27, 455–466.Google Scholar
  20. Tatarskii, V. L.,Wave Propagation in a Turbulent Medium (Dover, New York 1961).Google Scholar
  21. Tatarskii, V. L.,The Effects of the Turbulent Atmosphere on Wave Propagation (translated from Russian) (Nat. Technical Information Service 1971).Google Scholar
  22. Wu, R.-S. (1982),Attenuation of Short Period Seismic Waves due to Scattering, Geophys. Res. Lett.9, 9–12.Google Scholar
  23. Wu, R.-S. (1989),The Perturbation Method for Elastic Wave Scattering, Pure Applied Geophys.131, 605–637.Google Scholar
  24. Wu, R.-S., andAki, K. (1985),Elastic Wave Scattering by Random Medium and the Small-scale Inhomogeneities in the Lithosphere, J. Geophys. Res.90, 10261–10273.Google Scholar
  25. Wu, R.-S., andAki, K. (1988),Seismic Wave Scattering in the Three-dimensionally Heterogeneous Earth, Pure Appl. Geophys.128, 1–6.Google Scholar
  26. Wu, R.-S. andToksöz, M. N. (1987),Diffraction Tomography and Multisource Holography Applied to Seismic Imaging, Geophysics52, 11–12.Google Scholar
  27. Yamagida, K. (1985),Amplitude and Phase Variations of Surface Waves in a Laterally Heterogeneous Earth: Ray-and Beam-theoretical Approach, Ch. 5, Inversions for velocity anomalies in the Pacific Ocean basin, Ph.D. Thesis, Mass. Inst. of Tech., Cambridge, Mass.Google Scholar

Copyright information

© Birkhäuser Verlag 1990

Authors and Affiliations

  • Ru-Shan Wu
    • 1
  • Stanley M. Flatté
    • 2
  1. 1.Institute of GeophysicsChinese Academy of SciencesBeijingChina
  2. 2.Physics and Institute of TectonicsUniversity of CaliforniaSanta CruzUSA

Personalised recommendations