Advertisement

pure and applied geophysics

, Volume 132, Issue 1–2, pp 49–65 | Cite as

Stratigraphic filtering

  • J. R. Resnick
Article

Abstract

A plane-wave signal traveling at normal incidence through the earth's sedimentary layers attenuates, spreads, and changes waveform as it propagates, partly in response to “stratigraphic filtering” resulting from the buildup in the medium of intrabed multiples caused by the layering, and partly in response to absorption. This paper consists of a review of one-dimensional stratigraphic filtering. The action of stratigraphic filtering resembles that of absorption, and the filter's spectrum can be characterized by an effective quality factor. A comparison between the spectra of field data and synthetic data derived from absorption-free one-dimensional models suggests that in some geologic formations, stratigraphic filtering causes a significant fraction of the total attenuation evident on seismic records. In such studies, however, the simplicity of one-dimensional models leaves some uncertainty regarding the generality of the results. Nonetheless, one-dimensional stratigraphic filtering can serve as a useful metaphor that provides insight into the workings of more complex multi-dimensional scattering models.

Key words

Multiple scattering dispersion earth filter Q random scattering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aki, K., andRichards, P. G.,Quantitative Seismology (W. H. Freeman & Co., San Francisco 1980).Google Scholar
  2. Anstey, N. A. (1960),Attacking the Problems of the Synthetic Seismogram, Geophys. Prosp.8, 242–259.Google Scholar
  3. Backus, G. E. (1962),Long Wave Elastic Anisotropy Produced by Horizontal Layering, J. Geophys. Res.67, 4427–4440.Google Scholar
  4. Balanis, G. N. (1973),Waves in a Periodic Composite, J. Appl. Mech.40, 815–817.Google Scholar
  5. Balanis, G. N. (1975),Analysis of the Dispersion of Low Frequency Uniaxial Waves in Heterogeneous Periodic Elastic Media, J. Math. Phys.16, 1383–1387.Google Scholar
  6. Bamberger, A., Chavent, G., andLailly, P. (1979),About the Stability of the Inverse Problem in 1-D Wave Equations—Application to the Interpretation of Seismic Profiles, J. Appl. Math. Optim.5, 1–47.Google Scholar
  7. Bamberger, A., Chavent, G., Hemon, Ch., andLailly, P. (1982),Inversion of Normal Incidence Seismograms, Geophys.47, 757–770.Google Scholar
  8. Banik, N. C., Lerche, I., andShuey, R. T. (1985a),Stratigraphic Filtering, Part I: Derivation of the O'Doherty-Anstey Formula, Geophys.50, 2768–2774.Google Scholar
  9. Banik, N. C., Lerche, I., Resnick, J. R., andSheuy, R. T. (1985b),Stratigraphic Filtering, Part II: Model Spectra, Geophys.50, 2775–2783.Google Scholar
  10. Behrens, E. (1967),Sound Propagation in Lamellar Composite Materials and Averaged Elastic Constants, J. Acoust. Soc. Am.42, 378–383.Google Scholar
  11. Bois, P., Hemon, Ch., andMarescal, N. (1965),Influence de la Largeur du pas d'Echtillonnage du Carottage Continu de Vitesses sur les Sismogrammes Synthetiques a Multiples, Geophys. Prosp.13, 66–104.Google Scholar
  12. Brillouin, L.,Wave Propagation and Group Velocity (Academic Press, New York 1960).Google Scholar
  13. Bube, K. P., andBurridge, R. (1983),The One-dimensional Inverse Problem of Reflection Seismology, SIAM Review25, 497–559.Google Scholar
  14. Burridge, R., Papanicolaou, G. S., andWhite, B. S. (1987),Statistics for Pulse Reflection from a Randomly Layered Medium, SIAM J. Appl. Math.47, 146–168.Google Scholar
  15. Burridge, R., Papanicolaou, G. S., andWhite, B. S. (1988),One-Dimensional Wave Propagation in A Highly Discontinuous Medium, Wave Motion10, 19–44.Google Scholar
  16. D'erceville, I., andKunetz, G. (1963),Sur l'Influence d'un Empilement de Couches Minces en Sismique, Geophys. Prosp,11, 115–121.Google Scholar
  17. Eisner, E. (1967),Complete Solutions of the Webster Horn Equation, J. Acoust. Soc. Am.41, 1126–1146.Google Scholar
  18. Futterman, W. I. (1962),Dispersive Body Waves, J. Geophys. Res.67, 5279–5291.Google Scholar
  19. Ganley, D. C., andKanasewich, E. R. (1980),Measurement of Absorption and Dispersion from Check Shot Surveys, J. Geophys. Res.85, 5219–5226.Google Scholar
  20. Godfrey, R., Muir, F., andRocca, F. (1980),Modeling Seismic Impedance with Markov Chains, Geophys.45, 1331–1372.Google Scholar
  21. Goetz, J. F., Dupal, L., andBowles, J. (1979),An Investigation into Discrepancies between Sonic Log and Seismic Check Shot Velocities, Austral. Petr. Explor. Assoc. J.19, 131–141.Google Scholar
  22. Gouplllaud, P. L. (1961),An Approach to Inverse Filtering of Near Surface Layer Effects from Seismic Records, Geophys.26, 754–760.Google Scholar
  23. Gretener, P. E. F. (1961),An Analysis of Observed Time Discrepancies between Continuous and Conventional Well Velocity Surveys, Geophys.26, 1–11.Google Scholar
  24. Gupta, I. N. (1966),Dispersion of Body Waves in Layered Media, Geophys.31, 821–823.Google Scholar
  25. Hauge, P. S. (1981),Measurements of Attenuation from Vertical Seismic Profiles, Geophys.46, 1548–1558.Google Scholar
  26. Keller, J. B.,Effective behavior of heterogeneous media, InStatisical Mechanics and Statistical Methods in Theory and Application (ed. Landman, U.) (Plenum Press, New York 1977) pp. 631–644.Google Scholar
  27. Lee, E. H., andYang, W. H. (1973),On Waves in Composite Materials with Periodic Structure, SIAM J. Appl. Math.25, 492–499.Google Scholar
  28. Lerche, I., andMenke, W. (1986),An Inversion Method for Separating Apparent and Intrinsic Attenuation in Layered Media, Geophys. J. R. Astr. Soc.87, 333–347.Google Scholar
  29. Mason, W. P. (1927),A Study of the Regular Combination of Acoustic Elements with Applications to Recurrent Acoustic Filters, Tapered Acoustic Filters, and Horns, Bell System Tech. J.6, 258–275.Google Scholar
  30. McDonald, F. J., Angona, F. A., Mills, R. L., Sengbush, R. L., Van Nostrand, R. G., andWhite, J. E. (1958),Attenuation of Shear and Compresiional Waves in Pierre Shale, Geophys.23, 421–439.Google Scholar
  31. Menke, W. (1983),A Formula for the Apparent Attenuation of Acoustic Waves in Randomly Layered Media, Geophys. J. R. Astr. Soc.75, 541–544.Google Scholar
  32. Menke, W., andChen, R. (1984),Numerical Studies of the Coda Falloff Rate of Multiply Scattered Waves in Randomly Layered Media, Bull. Seismol. Soc. Am.74, 1605–1621.Google Scholar
  33. Menke, W., andDubendorff, B. (1985),Discriminating Intrinsic and Apparent Attenuation in Layered Rock, Geophys. Res. Lett.12, 721–724.Google Scholar
  34. Morlet, J., Arens, G., Fourgeau, E., andGiard, D. (1982),Wave Propagation and Sampling Theory—Part I: Complex Signal and Scattering in Multilayered Media, Geophys.47, 203–221.Google Scholar
  35. Morse, P. M.,Vibration and Sound, 2nd ed. (McGraw Hill, New York 1948).Google Scholar
  36. O'Brien, P. N. S., andLucas, A. L. (1971),Velocity Dispersion of Seismic Waves, Geophys. Prosp.19, 1–26.Google Scholar
  37. O'Doherty, R. F., andAnstey, N. A. (1971),Reflections on Amplitudes, Geophys. Prosp.19, 430–458.Google Scholar
  38. Postma, G. W. (1955),Wave Propagation in a Stratified Medium, Geophys.20, 780–806.Google Scholar
  39. Rayleigh, J. W. S.,The Theory of Sound, Vol. 1 (Macmillan, London 1894).Google Scholar
  40. Rayleigh, J. W. S. (1916),On the Propagation of Sound in Narrow Tubes of Variable Section, Phil Mag.31, 89–96.Google Scholar
  41. Resnick, J. R., Lerche, I., andShuey, R. T. (1986),Reflection, Transmission, and the Generalized Primary Wave, Geophys. J. R. Astr. Soc.87, 349–377.Google Scholar
  42. Richards, P. G., andMenke, W. (1983),The Apparent Attenuation of a Scattering Medium, Bull. Seismol. Soc. Am.73, 1005–1021.Google Scholar
  43. Ricker, N. (1953),The Form and Law of Propagation of Seismic Wavelets, Geophys.18, 10–46.Google Scholar
  44. Riznichenko, Y. V. (1949),Seismic Quasi-anisotropy, Bull. Acad. Sci. USSR, Geographical and Geophysical Series13, 518–544.Google Scholar
  45. Ruter, H., andSchepers, R. (1978),Investigation of the Seismic Response of Cyclically Layered Carboniferous Rock by Means of Synthetic Seismograms, Geophys. Prosp.26, 29–47.Google Scholar
  46. Rytov, S. M. (1956),Acoustical Properties of a Thinly Laminated Medium, Soviet Phys. Acoust.2, 68–80.Google Scholar
  47. Sato, H. (1979),Wave Propagation in One-dimensional Inhomogeneous Elastic Media, J. Phys. Earth27, 455–466.Google Scholar
  48. Sato, H. (1982),Amplitude Attenuation of Impulsive Waves in Random Media Based on Travel Time Corrected Mean-Wave Formalism, J. Acoust. Soc. Am.71, 559–564.Google Scholar
  49. Schoenberger, M., andLevin, F. K. (1974),Apparent Attenuation due to Intrabed Multiples, Geophys.39, 278–291.Google Scholar
  50. Schoenberger, M., andLevin, F. K. (1978),Apparent Attenuation due to Intrabed Multiples, II, Geophys.43, 730–737.Google Scholar
  51. Schoenberger, M., andLevin, F. K. (1979),The Effect of Subsurface Sampling on One-Dimensional Synthetic Seismograms, Geophys.44, 1813–1829.Google Scholar
  52. Sherwood, J. W. C., andTrorey, A. W. (1965),Minimum Phase and Related Properties of the Response of a Horizontally Stratified Absorptive Earth to Plane Acoustic Waves, Geophys.30, 191–197.Google Scholar
  53. Sobczyk, K.,Stochastic Wave Propagation (Elsevier, Amsterdam 1985).Google Scholar
  54. Spencer, T. W., Edwards, C. M., andSonnad, J. R. (1977),Seismic Wave Attenuation in Nonresolvable Cyclic Stratification, Geophys.42, 939–949.Google Scholar
  55. Spencer, T. W., Sonnad, J. R., andButler, T. M. (1982),Seismic Q—Stratigraphy or Dissipation, Geophys.47, 16–24.Google Scholar
  56. Stewart, G. W. (1922),Acoustic Wave Filters, Phys. Rev.20, 528–540.Google Scholar
  57. Stewart, R. R., Huddleston, P. D., andKan, T. K. (1984),Seismic versus Sonic Velocities: A Vertical Seismic Profiling Study, Geophys.49, 1153–1168.Google Scholar
  58. Treitel, S., andRobinson, E. A. (1966),Seismic Wave Propagation in Layered Media in Terms of Communication Theory, Geophys.31, 17–32.Google Scholar
  59. Trorey, A. W. (1962),Theoretical Seismograms with Frequency and Depth Dependent Absorption, Geophys.27, 766–785.Google Scholar
  60. Tullos, F. K., andReid, A. C. (1969),Seismic Attenuation of Gulf Coast Sediments, Geophys.34, 516–528.Google Scholar
  61. Velzeboer, C. J. (1981),The Theoretical Seismic Reflection Response of Sedimentary Sequences, Geophys.46, 843–853.Google Scholar
  62. Walden, A. T., andHosken, J. W. J. (1985),An Investigation of the Spectral Properties of Primary Reflection Coefficients, Geophys. Prosp.33, 400–435.Google Scholar
  63. Ward, R. W., andHewitt, M. R. (1977),Monofrequency Borehole Traveltime Survey, Geophys.42, 1137–1145.Google Scholar
  64. Webster, A. G. (1919),Acoustical Impedance and the Theory of Horns and of the Phonograph, Proc. Nat. Acad. Sci.5, 275–282.Google Scholar
  65. White, J. E., andAngona, F. A. (1955),Elastic Wave Velocities in Laminated Media, J. Acoust. Soc. Am.27, 310–317.Google Scholar
  66. Wu, R. S. (1982),Attenuation of Short Period Waves Due to Scattering, Geophys. Res. Lett.9, 9–12.Google Scholar
  67. Wuenschel, P. C. (1960),Seismogram Synthesis Including Multiples and Transmission Coefficients, Geophys.25, 106–129.Google Scholar
  68. Wuenschel, P. C. (1965),Dispersive Body Waves—an Experimental Study, Geophys.30, 539–551.Google Scholar
  69. Ziolkowski, A., andFokkema, J. J. (1986),The Progressive Attenuation of High Frequency Energy in Seismic Reflection Data, Geophys. Prosp.34, 981–1001.Google Scholar

Copyright information

© Birkhäuser Verlag 1990

Authors and Affiliations

  • J. R. Resnick
    • 1
  1. 1.Western GeophysicalHoustonUSA

Personalised recommendations