Advertisement

pure and applied geophysics

, Volume 132, Issue 1–2, pp 21–47 | Cite as

Seismic scattering near the earth's surface

  • Alan R. Levander
Article

Abstract

The seismic coda is usually thought to be composed of waves scattered from the heterogeneities in the earth. Three classes of scattering mechanisms have been recognized: repeated specular reflection of primary waves in a uniformly layered structure, volume scattering of primary waves from localized volume heterogeneities, and scattering of primary waves from irregularities in an otherwise generally layered structure. The presence of the earth's surface complicates the description of all these scattering phenomena whenever the scattering obstacles are near or at the surface. In this paper I review work which demonstrates the effects of scattering near the earth's surface, emphasizing three general areas of investigation: scattering of body waves from an irregular free surface, scattering of body waves in irregular layers, and propagation of surface waves across irregular topography or in irregular wave guides. Most of the effects of importance have been recognized in model studies of idealized geometries. Observational evidence in support of the model studies exists, but is often inferred. Few controlled experiments to measure scattering have been performed.

Topography can focus or defocus incident body waves and can convert body waves to surface waves and vice versa. Irregular surface layers can amplify incident body waves, couple body and surface waves, and produce resonances in spatially limited low velocity valley structures and highly irregular layers. Love wave propagation is highly sensitive to irregularities in a wave guide. Love wave dispersion measured over irregularly layered media can be quite different from the dispersion of the mean plane layered structure beneath the receiver array. Rayleigh wave dispersion is far less sensitive to smooth irregularities in a wave guide and is usually representative of the mean structure beneath the receiving array.

Key words

Wave scattering free surface heterogeneity body Rayleigh and Love waves 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Refeferences

  1. Aki, K., andLarner, K. (1970),Surface Motion of a Layered Medium Having an Irregular Interface Due to Incident Plane SH Waves, J. Geophys. Res.75, 933–954.Google Scholar
  2. Aki, K., andChouet, B. (1975),Origin of Coda Waves: Source Attenuation, and Scattering Effects, J. Geophys. Res.80, 3322–3342.Google Scholar
  3. Aki, K., andRichards, P. G.,Quantitative Seismology, Vol. I, II (W. H. Freeman and Company, San Francisco 1980) 932 pp.Google Scholar
  4. Alsop, L. E. (1966),Transmission and Reflection of Love Waves at a Vertical Discontinuity, J. Geophys. Res.71, 3969–3984.Google Scholar
  5. Bard, P.-Y. (1982),Diffracted Waves and Displacement Field over Two-dimensional Elevated Topography, Geophys. J. R. Astr. Soc.71, 731–760.Google Scholar
  6. Bard, P.-Y., andBouchon, M. (1980a),The Seismic Response of Sediment-filled Valleys. Part I. The Case of Incident SH Waves, Bull. Seismol. Soc. Am.70, 1263–1286.Google Scholar
  7. Bard, P.-Y., andBouchon, M. (1980b),The Seismic Response of Sediment-filled Valleys. Part II. The Case of Incident P and SV Waves, Bull. Seismol. Soc. Am.70, 1921–1942.Google Scholar
  8. Bard, P.-Y., andBouchon, M. (1985),The Two-dimensional Resonance of Sediment-filled Valleys, Bull. Seismol. Soc. Am.75, 519–541.Google Scholar
  9. Bard, P.-Y., andGariel, J. C. (1986),The Seismic Response of Two-dimensional Sedimentary Deposits with Large Vertical Velocity Gradients, Bull. Seismol. Soc. Am.76, 343–366.Google Scholar
  10. Bard, P.-Y., andTucker, B. E. (1985),Underground and Ridge Site Effects: A Comparison of Observation and Theory, Bull. Seismol. Soc. Am.75, 905–922.Google Scholar
  11. Boore, D. M. (1970),Love Waves in Nonuniform Wave Guides: Finite-difference Calculations, J. Geophys. Res.75, 1512–1527.Google Scholar
  12. Boore, D. M. (1972),A Note on the Effect of Simple Topography on Seismic SH Waves, Bull. Seismol. Soc. Am.62, 275–284.Google Scholar
  13. Boore, D. M. (1973),The Effect of Simple Topography on Seismic Waves: Implications for the Accelerations Recorded at Pacoima Dam, San Fernando Valley, California, Bull. Seismol. Soc. Am.63, 1603–1609.Google Scholar
  14. Boore, D. M., Larner, K., andAki, K. (1971),A Comparison of Two Independent Methods for the Solution of Wave-scattering Problems: Theoretical Response of a Sedimentary Basin to Vertically Incident SH Waves, J. Geophys. Res.76, 588–596.Google Scholar
  15. Boore, D. M., Harmsen, S. C., andHarding, S. T. (1981),Wave Scattering from a Step Change in Surface Topography, Bull. Seismol. Soc. Am.71, 117–125.Google Scholar
  16. Bouchon, M. (1973),Effect of Topography on Surface Motion, Bull. Seismol. Soc. Am.63, 615–632.Google Scholar
  17. Bouchon, M., andAki, K. (1977),Near-field of a Seismic Source in a Layered Medium with Irregular Interfaces, Geophys. J. R. Astr. Soc.50, 669–684.Google Scholar
  18. Bouchon, M. (1982),The Complete Synthesis of Seismic Crustal Phases at Regional Distances, J. Geophys. Res.87, 1735–1741.Google Scholar
  19. Campillo, M., Bouchon, M., andMassinon, B. (1984),Theoretical Study of the Excitation, Spectral Characteristics, and Geometrical Attenuation of Regional Seismic Phases, Bull. Seismol. Soc. Am.74, 79–90.Google Scholar
  20. Celebi, M. (1987),Topographical and Geological Amplifications Determined from Strong-motion and Aftershock Records of the 3 March 1985 Chile Earthquake, Bull. Seismol. Soc. Am.77, 1147–1167.Google Scholar
  21. Cormier, V. F., andSpudich, P. (1987),Amplification of Ground Motion and Waveform Complexity in Fault Zones: Examples from the San Andreas and Calaveras Faults, Geophys. J. R. Astr. Soc.70, 135–152.Google Scholar
  22. Davis, L. L., andWest, L. R. (1972),Observed Effects of Topography on Ground Motion, Bull. Seismol. Soc. Am.63, 283–298.Google Scholar
  23. Drake, L. A. (1972),Love and Rayleigh Waves in Nonhorizontally Layered Media, Bull. Seismol. Soc. Am.62, 1241–1258.Google Scholar
  24. Drake, L. A., andBolt, B. A. (1980),Love Waves Normally Incident at a Continental Boundary, Bull. Seismol. Soc. Am.70, 1103–1123.Google Scholar
  25. Dravinski, M. (1983),Scattering of Plane Harmonic SH Wave by Dipping Layers of Arbitrary Shape, Bull. Seismol. Soc. Am.73, 1303–1319.Google Scholar
  26. Ewing, W. M., Jardetzky, W. S., andPress, F.,Elastic Waves in Layered Media (McGraw-Hill, New York 1957), 380 pp.Google Scholar
  27. Fuyuki, M., andMatsumoto, Y. (1980),Finite-difference Analysis of Rayleigh Wave Scattering at a Trench, Bull. Seismol. Soc. Am.70, 2051–2069.Google Scholar
  28. Gangi, A. F., andWesson, R. L. (1978),P-wave to Rayleigh-wave Conversion Coefficients for Wedge Corners: Model Experiments, J. Comp. Physics29, 370–388.Google Scholar
  29. Geyer, R. L. (1976),Secondary Sources of Seismic Noise, Ph.D. Dissertation, University of Tulsa.Google Scholar
  30. Gibson, B. S., andLevander, A. R. (1988),Modeling and Processing Scattered Waves in Seismic Reflection Surveys, Geophysics53, 466–478.Google Scholar
  31. Gilbert, F., andKnopoff, L. (1960),Seismic Scattering from Topographic Irregularities, J. Geophys. Res.65, 3437–3444.Google Scholar
  32. Greenfield, R. J. (1971),Short-period P-wave Generation by Rayleigh-wave Scattering at Novaya Zemlya, J. Geophys. Res.76, 7988–8022.Google Scholar
  33. Gregerson, S., andAlsop, L. E. (1974),Amplitude of Horizontally Refracted Love Waves, Bull. Seismol. Soc. Am.64, 535–553.Google Scholar
  34. Gregerson, S., andAlsop, L. E. (1976),Mode Conversion of Love Waves at a Continental Margin, Bull. Seismol. Soc. Am.66, 1855–1872.Google Scholar
  35. Griffiths, D. W., andBollinger, G. A. (1979),The Effect of Appalachian Mountain Topography on Seismic Waves, Bull. Seismol. Soc. Am.69, 1081–1105.Google Scholar
  36. Haskell, N. A. (1960),Crustal Reflection of Plane SH Waves, J. Geophys. Res.65, 4147–4150.Google Scholar
  37. Haskell, N. A. (1962),Crustal Reflection of Plane P and SV Waves, J. Geophys. Res.67, 4751–4167.Google Scholar
  38. Helmberger, D. H., andEngen, G. R. (1980),Modeling the Long-period Body Waves from Shallow Earthquakes at Regional Distances, Bull. Seismol. Soc. Am.70, 1699–1714.Google Scholar
  39. Henrys, S. A., Levander, A. R., Hill, N. R., andGibson, B. S. (1986),Seismic Response of the Surface Layer at the Ohaaki Geothermal Field, New Zealand, SEG Expanded Abstracts, 56th Annual Int. Meeting, 110–112.Google Scholar
  40. Hill, N. R., andLevander, A. R. (1984),Resonances of Low-velocity Layers with Lateral Variations, Bull. Seismol. Soc. Am.74, 521–537.Google Scholar
  41. Hudson, J. A. (1967),Scattered Surface Waves from a Surface Obstacle, Geophys. J. R. Astr. Soc.13, 441–458.Google Scholar
  42. Hudson, J. A., andKnopoff, L. (1967),Statistical Properties of Rayleigh Waves Due to Scattering by Topography, Bull. Seismol. Soc. Am.57, 83–90.Google Scholar
  43. Hudson, J. A., andBoore, D. M. (1980),Comments on ‘Scattered Surface Waves from a Surface Obstacle’, Geophys. J. R. Astr. Soc.60, 123–127.Google Scholar
  44. Iian, A., Bond, L. J., andSpivack, M. (1979),Interaction of a Compressional Impuse with a Slot Normal to the Surface of an Elastic Half-space, Geophys. J. R. Astr. Soc.57, 463–477.Google Scholar
  45. Kagami, H., Duke, C. M., Liang, G. C., andOhta, Y. (1982),Observation of 1to 5Second Microtremors and their Application to Earthquake Engineering. Part II. Evaluation of Site Effect upon Seismic Wave Amplification Due to Extremely Deep Soil Deposits, Bull. Seismol. Soc. Am.72, 987–998.Google Scholar
  46. Kelly, K. R. (1983),Numerical Study of Love Wave Propagation, Geophysics48, 833–853.Google Scholar
  47. Kennett, B. L. N. (1972a),Seismic Waves in Laterally Inhomogeneous Media, Geophys. J. R. Astr. Soc.27, 301–325.Google Scholar
  48. Kennett, B. L. N. (1972b),Seismic Wave Scattering by Obstacles on Interfaces, Geophys. J. R. Astr. Soc.28, 249–266.Google Scholar
  49. Key, F. A. (1968),Some Observation and Analysis of Signal Generated Noise, Geophys. J. R. Astr. Soc. 15, 377–392.Google Scholar
  50. King, J. L., andTucker, B. E. (1984),Observed Variations of Earthquake Motion over a Sediment-filled Valley, Bull. Seismol. Soc. Am.74, 137–152.Google Scholar
  51. Knopoff, L., andHudson, J. A. (1964),Transmission of Love Waves Past a Continental Margin, J. Geophys. Res.69, 1649–1653.Google Scholar
  52. Knopoff, L., andMal, A. K. (1967),Phase Velocity of Surface Waves in the Transition Zone of Continental Margins. 1.Love Waves, J. Geophys. Res.72, 1769–1776.Google Scholar
  53. Larner, K., Chambers, R., Yang, M., Lynn, W., andWai, W. (1983),Coherent Noise in Marine Seismic Data, Geophysics29, 854–886.Google Scholar
  54. Levander, A. R. (1985),Finite-difference Calculations of Dispersive Rayleigh Wave Propagation, Tectonophysics113, 1–30.Google Scholar
  55. Levander, A. R., andHill, N. R. (1985),P-SV Resonances in Irregular Low-velocity Surface Layers, Bull. Seismol. Soc. Am.75, 847–864.Google Scholar
  56. Lysmer, J., andDrake, L. A. (1971),The Propagation of Love Waves Across Nonhorizontally Layered Structures, Bull. Seismol. Soc. Am.61, 1233–1251.Google Scholar
  57. Mal, A. K., andKnopoff, L. (1985),Transmission of Rayleigh Waves Past a Step Change in Elevation, Bull. Seismol. Soc. Am.55, 319–334.Google Scholar
  58. Malin, P. E. (1980),A First-order Scattering Solution for Modeling Elastic Wave Codas. I. The Acoustic Case, Geophys. J. R. Astr. Soc.63, 361–380.Google Scholar
  59. Martel, L., Munasinghe, M., andFarnell, G. W. (1977),Tranmission and Reflection of Rayleigh Wave Through a Step, Bull. Seismol. Soc. Am.67, 1277–1290.Google Scholar
  60. McGarr, A., andAlsop, L. E. (1967),Transmission and Reflection of Rayleigh Waves at Vertical Boundaries, J. Geophys. Res.72, 2169–2180.Google Scholar
  61. McLaughlin, K. L., Anderson, L. M., andLees, A. C. (1987),Effects of Local Geologic Structure on Yucca Flats, NTS, Explosion Waveforms: 2-dimensional Linear Finite-difference Simulations, Bull. Seismol. Soc. Am.77, 1211–1222.Google Scholar
  62. Munasinghe, M., andFarnell, G. W. (1973),Finite-difference Analysis of Rayleigh Wave Scattering at Vertical Discontinuities, J. Geophys. Res.78, 2454–2466.Google Scholar
  63. Murphy, J. R., Davis, A. H., andWeaver, N. L. (1971),Amplification of Seismic Body Waves by Low-velocity Surface Layers, Bull. Seismol. Soc. Am.61, 109–145.Google Scholar
  64. Odom, R. I. (1986),A Coupled Mode Examination of Irregular Wave Guides Including the Continuum Spectrum, Geophys. J. R. Astr. Soc.86, 425–453.Google Scholar
  65. Phillips, W. S., andAki, K. (1986),Site Amplification of Coda Waves from Local Earthquakes in Central California, Bull. Seismol. Soc. Am.76, 627–648.Google Scholar
  66. Resnick, J. R., Lerche, I., andShuey, R. T. (1986),Reflection, Transmission, and the Generalized Primary, Geophys. J. R. Astr. Soc.87, 349–377.Google Scholar
  67. Sanchez-Sesma, F. J., Herrara, I., andAviles, J. (1982),A Boundary Method for Elastic Wave Diffraction. Application to Scattering of SH Waves by Surface Irregularities, Bull. Seismol. Soc. Am.72, 473–490.Google Scholar
  68. Sanchez-Sesma, F. J. (1983),Diffraction of Elastic Waves by Three-dimensional Surface Irregularities, Bull. Seismol. Soc. Am.73, 1621–1636.Google Scholar
  69. Schlue, J. W., andHostettler, K. K. (1987),Rayleigh Wave Phase Velocity and Amplitude Values in the Presence of Lateral Heterogeneities, Bull. Seismol. Soc. Am.77, 244–255.Google Scholar
  70. Sills, L. B. (1978),Scattering of Norizontally-polarized Shear Waves by Surface Irregularities, Geophys. J. R. Astr. Soc.54, 319–348.Google Scholar
  71. Szelwig, R. (1984),Rayleigh Wave Scattering at Basin Type Heterogeneity, J. Geophys. Res.89, 11,476–11,494.Google Scholar
  72. Toksöz, M. N., Cheng, C. H., andTimur, A. (1976),Velocities of Seismic Waves in Porous Rocks, Geophysics41, 621–645.Google Scholar
  73. Trifunac, M. D. (1971),Surface Motion of a Semi-cylindrical Alluvial Valley from Incident Plane SH Waves, Bull. Seismol. Soc. Am.61, 1755–1770.Google Scholar
  74. Tucker, B. E., King, J. L., Hatzfeld, D., andNersesov, I. L. (1984),Observation of Hard-rock Site Effects, Bull. Seismol. Soc. Am.74, 121–136.Google Scholar
  75. Tucker, B. E., andKing, J. L. (1984),Dependence of Sediment-filled Valley Response on Input Amplitude and Valley Properties, Bull. Seismol. Soc. Am.74, 153–166.Google Scholar
  76. Vidale, J., andHelmberger, D. H. (1988),Elastic Finite-difference Modeling of the 1971 San Fernando, CA, Earthquake, Bull. Seismol. Soc. Am.78, 122–141.Google Scholar
  77. Webster, G. M. (ed.),Deconvolution (Society of Exploration Geophysicists, Tulsa, Okalahoma 1978) 482 pp.Google Scholar
  78. Wong, H. L., andTrifunac, M. D. (1974),Surface Motion of a Semi-elliptical Alluvial Valley from Incident Plane SH Waves, Bull. Seismol. Soc. Am.64, 1389–1408.Google Scholar
  79. Wuenschel, P. C. (1960),Seismogram Synthesis Including Multiples and Transmission Coefficients, Geophysics25, 106–129.Google Scholar
  80. Wuenschel, P. C. (1976),The Vertical Array in Reflection Seismology—Some Experimental Studies, Geophysics41, 219–232.Google Scholar

Copyright information

© Birkhäuser Verlag 1990

Authors and Affiliations

  • Alan R. Levander
    • 1
  1. 1.Department of Geology and GeophysicsRice UniversityHoustonUSA

Personalised recommendations