Skip to main content
Log in

The frictional behavior of lizardite and antigorite serpentinites: Experiments, constitutive models, and implications for natural faults

  • Rock Friction and Shear Zone Mechanics: Laboratory Studies
  • Published:
pure and applied geophysics Aims and scope Submit manuscript

Abstract

Laboratory studies of the frictional behavior of rocks can provide important information about the strength and sliding stability of natural faults. We have conducted friction experiments on antigorite and lizardite serpentinites, rocks common to both continental and oceanic crustal faults. We conducted both velocity-step tests and timed-hold tests on bare surfaces and gouge layers of serpentinite at room temperature. We find that the coefficient of friction of lizardite serpentinite is quite low (0.15–0.35) and could explain the apparent low stresses observed on crustal transform faults, while that of antigorite serpentinite is comparable to other crustal rocks (0.50–0.85). The frictional behavior of both types of serpentinite is well described by a two-mechanism model combining state-variable-dominated behavior at high slip velocities and flow-dominated behavior at low velocities. The two-mechanism model is supported by data from velocity-step tests and timed-hold tests. The low velocity behavior of serpentinite is strongly rate strengthening and should result in stable fault creep on natural faults containing either antigorite or lizardite serpentinite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, C.R.,The tectonic environments of seismically active and inactive areas along the San Andreas fault system. InProceedings of the Conference on Geologic Problems of the San Andreas Fault System (Stanford University Press, Palo Alto, CA 1968) pp. 70–82.

    Google Scholar 

  • Aumento, F., andLoubat, H. (1971),The Mid-Atlantic Ridge near 45o N. XVI. Serpentinized Ultramafic Intrusions, Can. J. Earth Sci.8, 631–663.

    Google Scholar 

  • Beeler, N. M., Weeks, J. D., andTullis, T.E. (1992),Evolution of Velocity Dependence of Granite with Displacement, EOS Trans. AGU73, 310.

    Google Scholar 

  • Biegel, R.L., Sammis, C.G., andDieterich, J.H. (1989),The Frictional Properties of a Simulated Gouge having a Fractal Particle Distribution, J. Structural Geol.11, 827–846.

    Google Scholar 

  • Blanpied, M.L., andTullis, T.E. (1986),The Stability and Behavior of a Frictional System with a Two State Variable Constitutive Law, Pure and Appl. Geophys.124, 425–444.

    Google Scholar 

  • Blanpied, M.L., Lockner, D.A., andByerlee, J.D. (1991),Fault Stability Inferred from Granite Sliding Experiments at Hydrothermal Conditions, Geophys. Res. Lett.18, 609–612.

    Google Scholar 

  • Bonatti, E., andHonnorez, J. (1976),Sections of the Earth's Crust in the Equatorial Atlantic, J. Geophys. Res.81, 4104–4116.

    Google Scholar 

  • Bowden, F.P., andTabor, D.,The Friction and Lubrication of Solids (Oxford University Press, London 1964).

    Google Scholar 

  • Byerlee, J.D. (1990),Friction, Overpressure and Fault Normal Compression, Geophys. Res. Lett.17, 2109–2112.

    Google Scholar 

  • Cann, J., Smith, D.K., Dougherty, M.E., Lin, J., Brooks, B., Spencer, S., MacLeod, C.J., McAllister, E., Pascoe, R.A., andKeeton, J. A. (1992),Major Landslides in the MAR Median Valley, 25–30°N: Their Role in Crustal Construction and Plutonic Exposure, EOS Trans. AGU,73, 569.

    Google Scholar 

  • Chester, F.M., andHiggs, N.G. (1992),Multi-mechanism Friction Constitutive Model for Ultra-fine Quartz Gouge at Hypocentral Conditions, J. Geophys. Res.97, 1859–1870.

    Google Scholar 

  • Chester, F.M., andLogan, J.M.,Frictional faulting in polycrystalline halite: Correlation of microstructure, mechanisms of slip, and constitutive behavior. InThe Brittle-ductile Transitions in Rocks: The Heard Volume, Geophys. Monogr.56 (A. G. Duba et al., eds.) (AGU, Washington, D.C. 1990) pp. 49–66.

    Google Scholar 

  • Christensen, N. I. (1972),The Abundance of Serpentinites in the Oceanic Crust, J. Geology80, 709–719.

    Google Scholar 

  • Cox, S.J.D.,Velocity-dependent friction in a large direct shear experiment on gabbro. InDeformation Mechanisms, Rheology and Tectonics (Knipe, R.J., and Rutter, E.H., eds.) (Geol. Soc. Am. Spcl. Pub. 54, 1990) pp. 63–70.

  • Dengo, C. A., andLogan, J.M. (1981),Implications of the Mechanical and Frictional Behavior of Serpentinite to Seismogenic Faulting, J. Geophys. Res.86, 10771–10782.

    Google Scholar 

  • Dieterich, J.H. (1972),Time-dependent Friction in Rocks, J. Geophys. Res.77, 3690–3697.

    Google Scholar 

  • Dieterich, J. H. (1979),Modelling of Rock Friction: 1. Experimental Results and Constitutive Equations, J. Geophys. Res.84, 2161–2168.

    Google Scholar 

  • Dieterich, J.H.,Constitutive properties of faults with simulated gouge. InMechanical Behavior of Crustal Rocks, Geophys. Monogr.24 (Carter, N. L. et al., eds.) (AGU, Washington, D.C. 1981) pp. 103–120.

    Google Scholar 

  • Dieterich, J.H., andLinker, M.L. (1992),Fault Stability under Conditions of Variable Normal Stress, Geophys. Res. Lett.19, 1691–1694.

    Google Scholar 

  • Froidevaux, C. (1973),Energy Dissipation and Geometric Structure at Spreading Plate Boundaries, Earth Planet. Sci. Lett.20, 419–424.

    Google Scholar 

  • Greenwood, J.A., andWilliamson, J.B.P. (1966),Contact of Nominally Flat Surfaces, Proc. Royal Soc. London A295, 300–319.

    Google Scholar 

  • Griggs, D.T. (1967),Hydrolytic Weakening of Quartz and Other Silicates, Royal Astron. Soc. Geophys. J.14, 19–31.

    Google Scholar 

  • Irwin, W.P., andBarnes, I. (1975),Effect of Geologic Structure and Metamorphic Fluids on Seismic Behavior of the San Andreas Fault System in Central and Northern California, Geology3, 713–716.

    Google Scholar 

  • Janecky, D.T., andSeyfried, W.E., Jr. (1986),Hydrothermal Serpentinization of Peridotite with the Oceanic Crust: Experimental Investigations of Mineralogy and Major Element Chemistry, Geochim. et Cosmochim. Acta50, 1357–1378.

    Google Scholar 

  • Kronenberg, A.K., Kirby, S.H., andPinkston, J. (1990),Basal Slip and Mechanical Anisotropy of Biotite, J. Geophys. Res.95, 19,257–19,278.

    Google Scholar 

  • Kunze, G. (1956),Die gewellte Struktur des Antigorits, I. Zeit. Krist.108, 82–107.

    Google Scholar 

  • Lachenbruch, A.H., andThompson, G.A. (1972),Oceanic Ridges and Transform Faults: Their Intersection Angles and Resistance to Plate Motion, Earth Planet. Sci. Lett.15, 116–122.

    Google Scholar 

  • Marone, C.J., Raleigh, C.B., andScholz, C.H. (1990),Frictional Behavior and Constitutive Modeling of Simulated Fault Gouge, J. Geophys. Res.95, 7007–7025.

    Google Scholar 

  • Mellini, M., andZanazzi, P.F. (1987),Crystal Structures of Lizardite-1T and Lizardite-2H 1 from Coli, Italy, Am. Mineral.72, 943–948.

    Google Scholar 

  • Page, N.J., andColeman, R.G., (1987),Serpentinite Mineral Analysis and Physical Properties, Geological Survey Research, B103–B107.

  • Prichard, H.M. (1979),A Petrographic Study of the Process of Serpentinization in Ophiolites and the Ocean Crust, Contrib. Mineral. Petrol.68, 231–241.

    Google Scholar 

  • Reinen, L.A., Tullis, T.E., andWeeks, J.D. (1992a),Two-mechanisms Model for Frictional Sliding of Serpentinite, Geophys. Res. Lett.19, 1535–1538.

    Google Scholar 

  • Reinen, L.A., Tullis, T.E., andWeeks, J.D. (1992b),The Frictional Behavior of Serpentinite: Implications for Aseismic Slip on Oceanic Transform Faults, EOS Trans. Am. Geophys. Union73, 550.

    Google Scholar 

  • Reinen, L.A., Weeks, J.D., andTullis, T.E. (1992c)Interaction of Two Mechanisms during Frictional Sliding of Serpentinite, EOS Trans. Am. Geophys. Union73, 310.

    Google Scholar 

  • Reinen, L.A., Weeks, J.D., andTullis, T.E. (1992d),Comparison of the Frictional Constitutive Behavior of Antigorite and Lizardite Serpentine Polymorphs, EOS Trans. Am. Geophys. Union73, 511.

    Google Scholar 

  • Reinen, L.A., Weeks, J.D., andTullis, T.E. (1992e),Velocity Dependence of Serpentinite Friction Promotes Aseismic Slip on Faults, Geol. Soc Am. Abstracts24, A323.

    Google Scholar 

  • Reinen, L.A., Weeks, J.D., andTullis, T.E. (1991),The Frictional Behavior of Serpentinite: Implications for Aseismic Creep on Shallow Crustal Faults, Geophys. Res. Lett.18, 1921–1924.

    Google Scholar 

  • Reinen, L.A. (1993),The Frictional Behavior of Serpentinite: Experiments, Constitutive Models, and Implications for Natural Faults, Ph.D. Thesis, Brown University, 222 pp.

  • Reinen, L.A., Tullis, T.E., andWeeks, J.D. (1993),A Mechanism for Weak, Creeping Faults, EOS Trans. Am. Geophys. Union74, 589.

    Google Scholar 

  • Rice, J.R.,Fault stress states, pore pressure distributions, and weakness of the San Andreas Fault. InFault Mechanics and Transport Properties of Rock (evans, B., and Wong, T.-F. eds.) pp. 475–503 (Academic Press Ltd. 1992).

  • Rice, J.R., andRuina, A.L. (1983),Stability of Steady Frictional Slipping, J. Appl. Mech.105, 343–349.

    Google Scholar 

  • Ruina, A.L. (1983),Slip Instability and State Variable Friction Laws, J. Geophys. Res.88, 10359–10370.

    Google Scholar 

  • Rutter, E.H., Atkinson, B.K., andMainprice, D.H. (1978),On the Use of the Stress Relaxation Testing Method in Studies of the Mechanical Behaviour of Geological Materials, Geophys. J. R. Astr. Soc.55, 155–170.

    Google Scholar 

  • Tucholke, B.E., Lin, J., andKleinrock, M.C. (1992),Crustal Structure of Spreading Segments on the Western Flank of the Mid-Atlantic Ridge at 25°25′N to 27°10′N, EOS Trans. AGU,73, 537.

    Google Scholar 

  • Tullis, T.E. (1988),Rock Friction Constitutive Behavior from Laboratory Experiments and its Implications for an Earthquake Prediction Field Monitoring Program, Pure and Appl. Geophys.126, 555–558.

    Google Scholar 

  • Tullis, T.E., andWeeks, J.D. (1986),Constitutive Behavior and Stability of Frictional Sliding of Granite, Pure and Appl. Geophys.124, 10–42.

    Google Scholar 

  • Tullis, T.E., andWeeks, J.D. (1987),Micromechanics of Frictional Resistance of Calcite, EOS Trans. AGU68, 405.

    Google Scholar 

  • Twiss, R.J., andMoores, E.M.,Structural Geology (W.H. Freeman and Co., New York 1992).

    Google Scholar 

  • Weeks, J.D. (1993),Constitutive Laws for High Velocity Frictional Sliding and Their Influence on Stress Drop During Unstable Slip, J. Geophys. Res.98, 17,637–17,648.

    Google Scholar 

  • Weeks, J.D., Beeler, N.M., andTullis, T.E. (1991),Frictional Behavior: Glass is Like a Rock, EOS Trans. AGU72, 457–458.

    Google Scholar 

  • Weeks, J.D., andTullis, T.E. (1985),Frictional Sliding of Dolomite: A Variation in Constitutive Behavior, J. Geophys. Res.90, 7821–7826.

    Google Scholar 

  • Weeks, J.D., andTullis, T.E. (1992),High-resolution Measurement of Displacement in Rock Friction Experiments, EOS Trans. AGU73, 565.

    Google Scholar 

  • Whittaker, E.J.W., andZussman, J. (1956),The Characterization of Serpentine Minerals by X-ray Diffraction, Mineral. Mag. XXXI, 107–126.

    Google Scholar 

  • Wicks, F.J., andO'Hanley, D.S. (1988),Serpentine minerals: Structures and petrology. InReviews in Min., Hydrous Phyllosilicate (Ribbe, P.H., ed.)19, 91–168.

  • Wilcock, W.S., Purdy, G.M., andSolomon, S.C. (1990),Microearthquake Evidence for Extension across the Kane Transform Fault, J. Geophys. Res.95, 15,439–15,462.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reinen, L.A., Weeks, J.D. & Tullis, T.E. The frictional behavior of lizardite and antigorite serpentinites: Experiments, constitutive models, and implications for natural faults. PAGEOPH 143, 317–358 (1994). https://doi.org/10.1007/BF00874334

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00874334

Key words

Navigation