pure and applied geophysics

, Volume 143, Issue 1–3, pp 181–201 | Cite as

Petrophysical study of faults in sandstone using petrographic image analysis and X-ray computerized tomography

  • M. Antonellini
  • A. Aydin
  • D. D. Pollard
  • P. D'Onfro
Faulting and Fault Zones: Field Observations

Abstract

Petrographic image analysis (PIA) and X-ray computerized tomography (CT) provide local determinations of porosity in sandstone. We have investigated small faults called deformation bands in porous sandstones using these techniques. Because the petrophysical properties of the fault rock vary at a small scale (mm scale), the ability of PIA and CT to determine porosity in small volumes of rock and to map porosity distribution in two and three dimensions is crucial. This information is used to recognize the processes involved in fault development and the different kinds of microstructures associated with dilatancy and compaction. The petrophysical study of fault rock in sandstone permits one to make predictions of the hydraulic properties of a fault and thereby evaluate the sealing or fluid transmitting characteristics of faulted reservoirs and aquifers. The results of this study indicate that faulting in sandstone alters the original porosity and permeability of the host rock: the porosity is reduced by an order of magnitude and the permeability is reduced by one to more than seven orders of magnitude for faults associated with compaction.

Key words

Cataclasis fluid flow fault video image analysis X-ray computerized tomography porosity permeability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antonellini, M. A., Aydin, A., andPollard, D. (1994),Microstructure of Deformation Bands in Porous Sandstones at Arches National Park, Utah, J. Struct. Geology16, 941–959.Google Scholar
  2. Antonellini, M. A., andAydin, A. (1994),Effect of Faulting on Fluid Flow in Porous Sandstones: Petrophysical Properties, The Am. Assoc. of Petroleum Geologists Bull.78, 355–377.Google Scholar
  3. Antonellini, M. A., andAydin, A.,Effect of Faulting on Fluid Flow in Porous Sandstones: Geometric Properties, submitted to The Am. Assoc. of Petroleum Geologists Bull.Google Scholar
  4. Aydin, A. (1978),Small Faults Formed as Deformation Bands in Sandstone, Pure and Appl. Geophys.116, 913–930.Google Scholar
  5. Aydin, A., andJohnson, A. M. (1983),Analysis of Faulting in Porous Sandstones, J. Struct. Geology5, 19–31.Google Scholar
  6. Blanpied, M. L., Lockner, D. A., andByerlee, J. D. (1992),An Earthquake Mechanism Based on Rapid Sealing of Faults, Nature358, 574–576.Google Scholar
  7. Bourbiè, T., Coussy, O., andZinszner, B.,Acoustics of Porous Media (Gulf Publishing Company, Technip, Paris 1987).Google Scholar
  8. Brooks, R. A., andDiChiro, G. (1976),Principles of Computer-assisted Tomography in Radiographic and Radioisotopic Imaging, Phys. Med. Biol.21, 689–732.PubMedGoogle Scholar
  9. Byerlee, J. (1990),Friction, Overpressure and Fault Normal Compression, Geophys. Res. Lett.17, 2109–2112.Google Scholar
  10. Byerlee, J. (1993),Model for Episodic Flow of High-pressure Water in Fault Zones before Earthquakes, Geology21, 303–306.Google Scholar
  11. Downey, M. W. (1984),Evaluating Seals for Hydrocarbon Accumulations, The Am. Assoc. of Petroleum Geologists Bull.68, 1752–1763.Google Scholar
  12. Ehrlich, R., Crabtree, S. J., Horkowitz, K. O., andHorkowitz, J. P. (1991),Petrography and Reservoir Physics: I, II and III, The Am. Assoc. of Petroleum Geologists Bull.75, 1547–1562.Google Scholar
  13. Edwards, H. E., Becker, A. D., andHowell, J. A.,Compartmentalization of an Aeolian sandstone by structural heterogeneities: Permo-Triassic Hopeman Sandstone, Moray Firth, Scotland. InCharacterization of Fluvial and Aeolian Reservoirs (eds. North, C. P., and Prosser, D. J.) (Geological Society Special Publication, No. 73 1993) pp. 339–365.Google Scholar
  14. Hardmann, R. F. P., andBooth, J. E.,The significance of normal faults in the exploration and production of North Sea hydrocarbons. InThe Geometry of Normal Faults (eds. Roberts A. M., Yielding, G., and Freeman, B.) (Geological Society Special Publication, No. 56 1991) pp. 1–13.Google Scholar
  15. Henderson, L. H. (1939),Detailed Geological Mapping and Fault Studies of the San Jacinto Tunnel Line and Vicinity, J. Geology47, 314–324.Google Scholar
  16. Hounsfield, G. N.,A Method of and Apparatus for Examination of a Body by Radiation such as X-or Gamma Radiation (British Patent no. 1283915 1972).Google Scholar
  17. Johnson, G. R.,Rock property measurements and analysis of selected igneous, sedimentary, and metamorphic rocks from worldwide localities (U.S. Geological Survey Open-file Report 83-0736, Denver 1983).Google Scholar
  18. Kastning, E. H.,Faults as positive and negative influences on ground-water flow and conduit enlargement. InHydrologic-Problems in Karst Regions (eds. Dilamarter, R. R., and S. C. Csallany) (Western Kentucky University, Bowling Green 1977) pp. 193–201.Google Scholar
  19. Knipe, R. J., Agar, S. M., andPrior, D. J. (1991),The Microstructural Evolution of Fluid Flow Paths in Semi-lithified Sediments from Subduction Complexes, Philosophical Trans. Roy. Soc. London A335, 261–273.Google Scholar
  20. Knott, S. D. (1993),Fault Seal Analysis in the North Sea, The Am. Assoc. Petroleum Geologists Bull.77, 778–792.Google Scholar
  21. Logan, J. M. (1991),The Influence of Fault Zones on Crustal-scale Fluid Transport, The Am. Assoc. Petroleum Geologists Bull.75, 623.Google Scholar
  22. Maclay, R. W., andLand, L. F. (1988),Simulation of Flow in the Edwards Aquifer, San Antonio Region, Texas, and Refinement of Storage and Flow Concepts, U.S. Geological Survey Water-Supply Paper,2336, A1-A48.Google Scholar
  23. McCaig, A. M. (1989),Fluid Flow through Fault Zones, Nature340, 600.Google Scholar
  24. Moore, J. C., Brown, K. M., Horath, F., Cochrane, G., MacKay, M., andMoore, G. (1991),Plumbing Accretionary Prisms: Effects of Permeability Variations, Philosophical Trans. Roy. Soc. London A335, 275–288.Google Scholar
  25. Nelson, R. A.,Geologic Analysis of Naturally Fractured Reservoirs (Gulf Publishing Company, Houston, Texas 1985).Google Scholar
  26. Parry, R. H. G. (1960),Triaxial Compression and Extension Tests on Remoulded Saturated Clay, Geotechnique10, 166–180.Google Scholar
  27. Pittman, E. D. (1981),Effect of Fault-related Granulation on Porosity and Permeability of Quartz Sandstones, Simpson Group (Ordovician), Oklahoma, The Am. Assoc. Petroleum Geologists Bull.65, 2381–2387.Google Scholar
  28. Rice, J. R.,Fault stress states, pore pressure distributions, and the weakness of the San Andreas Fault. InEarthquake Mechanics and Transport Properties of Rocks (eds. Evans, B., and Wong, T. F.) (Academic Press, London 1992) pp. 475–503.Google Scholar
  29. Robison, J. H., Stephens, D. M., Luckey, R. R., andBaldwin, D. A.,Water Levels in Periodically Measured Wells in the Yucca Mountain Area, Nye County, Nevada, 1981–1987 (U.S. Geological Survey Open-file Report 88-0468, Denver 1988).Google Scholar
  30. Schofield, A. N., andWroth, P.,Critical State Soil Mechanics (McGraw Hill, New York 1968).Google Scholar
  31. Sibson, R. H., Moore, J. McM., andRankin, A. H. (1975),Seismic Pumping—a Hydrothermal Fluid Transport Mechanism. J. Geological Soc. London131, 653–659.Google Scholar
  32. Sleep, N. H., andBlanpied, M. L. (1992),Creep Compaction and the Weak Rheology of Major Faults, Nature359, 687–692.Google Scholar
  33. Underhill, J. R., andWoodcock, N. H. (1987),Faulting mechanisms in high-porosity sandstones; New Red Sandstone, Arran, Scotland. InDeformation of Sediments and Sedimentary Rocks (eds. Jones, M. E., and Preston, R. M. F.) (Special Publication of the Geological Society of London,29 1987) pp. 91–105.Google Scholar
  34. Vinegar, H. J., De, Waal, J. A., andWellington, S. L. (1991),CT Studies of Brittle Failure in Castlegate Sandstone, Int. J. Rock Mech. Min. Sci. and Geomech. Abstr.28, 441–448.Google Scholar
  35. Wellington, S. L., andVinegar, H. J. (1987),X-ray Computerized Tomography, J. Petroleum Tech.87, 885–898.Google Scholar
  36. Wong, T. F., andDavid, C. (1992),Grain Crushing and Pore Collapse as Controlling Mechanisms for the Brittle-Ductile Transition, EOS73, 515.Google Scholar
  37. Wood, D. M.,Soil Behavior and Critical State Soil Mechanics (Cambridge University Press, England 1990).Google Scholar
  38. Zhang, J., Wong, T. F., andDavis, D. M. (1990),Micromechanics of Pressure-induced Grain Crushing in Porous Rocks, J. Geophys. Res.95, 341–352.Google Scholar
  39. Zoback, M. D., Zoback, M. L., Mount, Van S., Suppe, J., Eaton, J. P., Healy, J. H., Oppenheimer, D. H., Reasenberg, P. A., Jones, L. M., Raleigh, C. B., Wong, I. G., Scotti, O., andWentworth, C. M. (1987),New Evidence on the State of Stress of the San Andreas Fault System, Science238, 1105–1111.Google Scholar

Copyright information

© Birkhäuser Verlag 1994

Authors and Affiliations

  • M. Antonellini
    • 1
  • A. Aydin
    • 1
  • D. D. Pollard
    • 1
  • P. D'Onfro
    • 2
  1. 1.Department of Geological and Environmental SciencesStanford UniversityStanfordU.S.A.
  2. 2.Conoco Inc.Ponca CityU.S.A.

Personalised recommendations