Skip to main content
Log in

Sulfate reduction by a syntrophic propionate-oxidizing bacterium

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The syntrophic propionate-oxidizing bacterium MPOB was able to grow in the absence of methanogens by coupling the oxidation of propionate to the reduction of sulfate. Growth on propionate plus sulfate was very slow (μ=0.024 day−1). An average growth yield was found of 1.5 g (dry weight) per mol of propionate. MPOB grew even slower than other sulfate-reducing syntrophic propionate-oxidizing bacteria. The growth rates and yields of strict sulfate-reducing bacteria (Desulfobulbus sp.) grown on propionate plus sulfate are considerably higher.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amos DA & McInerney MJ (1990) Growth ofSyntrophomonas wolfei on unsaturated short chain fatty acids. Arch. Microbiol. 154: 31–36

    Google Scholar 

  • Beaty PS & McInerney MJ (1987) Growth ofSyntrophomonas wolfei in pure culture on crotonate. Arch. Microbiol. 147: 389–393

    Google Scholar 

  • Boone DR & Bryant MP (1980) Propionate-degrading bacterium,Syntrophobacter wolinii sp. nov. gen. nov., from methanogenic ecosystems. Appl. Environ. Microbiol. 40: 626–632

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254

    Article  PubMed  Google Scholar 

  • Dong X, Cheng G & Stams AJM (1994) Butyrate oxidation bySyntrophospora bryantii in co-culture with different methanogens and in pure culture with pentenoate as electron acceptor. Appl. Microbiol. Biotechnol. 42: 647–652

    Google Scholar 

  • Dörner C (1992) Biochemie und Energetik der Wasserstoff-Freisetzung in der syntrophen Vergärung von Fettsäuren und Benzoat. Dissertation, University of Tubingen

  • Harmsen HJM, Wullings B, Akkermans ADL, Ludwig W & Stams AJM (1993) Phylogenetic analysis ofSyntrophobacter wolinii reveals a relationship with sulfate-reducing bacteria. Arch. Microbiol. 160: 238–240

    PubMed  Google Scholar 

  • Harmsen HJM, Kengen HMP, Akkermans ADL & Stams AJM (1995) Phylogenetic analysis of two syntrophic propionate-oxidizing bacteria in enrichment cultures. Syst. Appl. Microbiol. 18: 67–73

    Google Scholar 

  • Laanbroek HJ, Abee T & Voogd IL (1982) Alcohol conversions byDesulfobulbus propionicus Lindhorst in the presence and absence of sulphate and hydrogen. Arch. Microbiol. 133: 178–184

    Google Scholar 

  • Laanbroek HJ, Geerligs HJ, Sijtsma L & Veldkamp H (1984) Competition for sulfate amongDesulfobacter, Desulfobulbus, andDesulfovibrio spp. isolated from intertidal sediments. Appl. Environ. Microbiol. 47: 329–334

    Google Scholar 

  • McInerney MJ, Amos DA, Kealy KS & Palmer JA (1992) Synthesis and function of polyhydroxyalkanoates in anaerobic syntrophic bacteria. FEMS Microbiol. Rev. 103: 195–205

    Google Scholar 

  • Oude Elferink SJWH, Visser A, Hulshoff Pol LW & Stams AJM (1994) Sulfate reduction in methanogenic bioreactors. FEMS Microbiol. Rev. 15: 119–136

    Google Scholar 

  • Samain E, Dubourguier HC & Albagnac G (1984) Isolation and characterization ofDesulfobulbus elongatus sp. nov. from a mesophilic industrial digester. Syst. Appl. Microbiol. 5: 391–401

    Google Scholar 

  • Schink B (1992) Syntrophism among prokaryotes. In: Balows A, Trüper HG, Dworkin M, Harder W & Schleifer KH (Eds) The Prokaryotes (pp 276–299.) Springer Verlag, New York

    Google Scholar 

  • Stams AJM (1994) Metabolic interactions between anaerobic bacteria in methanogenic environments. Antonie van Leeuwenhoek 66: 271–294

    PubMed  Google Scholar 

  • Stams AJM, Kremer DR, Nicolay K, Weenk GH & Hansen TA (1984) Pathway of propionate formation inDesulfobulbus propionicus. Arch. Microbiol. 139: 167–173

    Google Scholar 

  • Stams AJM, Van Dijk JB, Dijkema C & Plugge CM (1993) Growth of syntrophic propionate-oxidizing bacteria with fumarate in the absence of methanogenic bacteria. Appl. Environ. Microbiol. 59: 1114–1119

    Google Scholar 

  • Thauer RK & Morris JG (1984) Metabolism of chemotrophic anaerobes: old views and new aspects. In: Kelly DP & Carr NG (Eds) The microbe 1984: part 2. Prokaryotes and eukaryotes (pp 123–168). Cambridge University Press, Cambridge

    Google Scholar 

  • Trüper HG & Schlegel HG (1964) Sulphur metabolism in Thiorhodaceae. I. Quantitative measurements of growing cells ofChromatium okenii. Antonie van Leeuwenhoek 30: 225–238

    PubMed  Google Scholar 

  • Visser A, Beeksma I, van der Zee F, Stams AJM & Lettinga G (1993) Anaerobic degradation of volatile fatty acids at different sulphate concentrations. Appl. Microbiol. Biotechnol. 40: 549–556

    Google Scholar 

  • Wallrabenstein C, Hauschild E & Schink B (1994) Pure culture and cytological properties ofSyntrophobacter wolinii. FEMS Microbiol. Lett. 123: 249–254

    Google Scholar 

  • Widdel F & Hansen TA (1992) The dissimilatory sulfate-reducing and sulfur-reducing bacteria. In: Balows A, Trüper HG, Dworkin M, Harder W & Schleifer KH (Eds) The Prokaryotes (pp 583–624). Springer Verlag, New York

    Google Scholar 

  • Widdel F & Pfennig N (1982) Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. II. Incomplete oxidation of propionate byDesulfobulbus propionicus gen. nov. sp. nov. Arch. Microbiol. 131: 360–365

    Google Scholar 

  • Wu W-M, Jain MK, Conway de Macario E, Thiele JH & Zeikus JG (1992) Microbial composition and characterization of prevalent methanogens and acetogens isolated from syntrophic methanogenic granules. Appl. Microbiol. Biotechnol. 38:282–290

    Google Scholar 

  • Zhao H, Yang D, Woese CR & Bryant MP (1990) Assignment ofClostridium bryantii toSyntrophospora bryantii gen. nov., comb. nov. on the basis of a 16SrRNA sequence analysis of its crotonategrown pure culture. Int. J. Syst. Bacteriol. 40: 40–44

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Kuijk, B.L.M., Stams, A.J.M. Sulfate reduction by a syntrophic propionate-oxidizing bacterium. Antonie van Leeuwenhoek 68, 293–296 (1995). https://doi.org/10.1007/BF00874139

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00874139

Key words

Navigation