Antonie van Leeuwenhoek

, Volume 68, Issue 4, pp 281–284 | Cite as

Role of formate and hydrogen in the degradation of propionate and butyrate by defined suspended cocultures of acetogenic and methanogenic bacteria

  • Alfons J. M. Stams
  • Xiuzhu Dong
Article

Abstract

The butyrate-degradingSyntrophospora bryantii degrades butyrate and a propionate-degrading strain (MPOB) degrades propionate in coculture with the hydrogen- and formate-utilizingMethanospirillum hungatii orMethanobacterium formicicum. However, the substrates are not degraded in constructed cocultures with twoMethanobrevibacter arboriphilus strains which are only able to consume hydrogen. Pure cultures of the acetogenic bacteria form both hydrogen and formate during butyrate oxidation with pentenoate as electron acceptor and during propionate oxidation with fumarate as electron acceptor. Using the highest hydrogen and formate levels which can be reached by the acetogens and the lowest hydrogen and formate levels which can be maintained by the methanogens it appeared that the calculated formate diffusion rates are about 100 times higher than the calculated hydrogen diffusion rates.

Key words

H2 formate syntrophic degradation fatty acid oxidation interspecies electron transfer methanogenesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amos DA & McInerney MJ (1990) Growth ofSyntrophomonas wolfei on short-chain unsaturated fatty acids. Arch. Microbiol. 154: 31–36Google Scholar
  2. Beaty PS & McInerney MJ (1987) Growth ofSyntrophomonas wolfei in pure culture on crotonate. Arch. Microbiol. 147: 389–393Google Scholar
  3. Bleicher K & Winter J (1994) Formate production and utilization by methanogens and by sewage sludge consortia — interference with the concept of interspecies formate transfer. Appl. Microbiol. Biotechnol. 40: 910–915Google Scholar
  4. Boone DR & Bryant MP (1980) Propionate-degrading bacterium,Syntrophobacter wolinii sp. nov. gen. nov., from methanogenic ecosystems. Appl. Environ. Microbiol. 40: 626–632Google Scholar
  5. Boone DR, Johnson RL & Liu Y (1989) Diffusion of the interspecies electron carriers H2 and formate in methanogenic ecosystems, and implications in the measurement of KM for H2 or formate uptake. Appl. Environ. Microbiol. 55: 1735–1741Google Scholar
  6. Dong X, Cheng G & Stams AJM (1994a) Butyrate oxidation bySyntrophosporabryantii in coculture with different methanogens and in pure culture with pentenoate as electron acceptor. Appl. Microbiol. Biotechnol. 42: 647–652Google Scholar
  7. Dong X, Plugge CM & Stams AJM (1994b) Anaerobic degradation of propionate by a mesophilic acetogenic bacterium in coculture and triculture with different methanogens. Appl. Environ. Microbiol. 60: 2834–2838Google Scholar
  8. Dong X & Stams AJM (1995) Evidence for H2 and formate formation during syntrophic butyrate and propionate degradation. Anaerobe 1: 35–39Google Scholar
  9. Dörner C (1992) Biochemie und Energetik der Wasserstoff-Freisetzung in der syntrophen Vergärung von Fettsäuren und Benzoat. Dissertation, University of TübingenGoogle Scholar
  10. Houwen FP, Dijkema C, Schoenmakers CHH, Stams AJM & Zehnder AJB (1987)13C-NMR study of propionate degradation by a methanogenic coculture. FEMS Microbiol. Lett. 41: 269–274Google Scholar
  11. Houwen FP, Plokker J, Dijkema C & Stams AJM (1990) Enzymatic evidence for involvement of the methylmalonyl-CoA pathway in propionate oxidation bySyntrophobacter wolinii. Arch. Microbiol. 155: 52–55Google Scholar
  12. Hungate RE (1967) Hydrogen as an intermediate in the rumen fermentation. Arch. Microbiol. 59: 158–164Google Scholar
  13. Koch M, Dolfing J, Wuhrmann K & Zehnder AJB (1983) Pathway of propionate degradation by enriched methanogenic cultures. Appl. Environ. Microbiol. 45: 1411–1414Google Scholar
  14. McInerney MJ, Bryant MP, Hespell RB & Costerton JW (1981)Syntrophomonas wolfei gen. nov. sp. nov., an anaerobic, syntrophic, fatty acid-oxidizing bacterium. Appl. Environ. Microbiol. 41: 1029–1039Google Scholar
  15. Plugge CM, Dijkema C & Stams AJM (1993) Acetyl-CoA cleavage pathway in a syntrophic propionate oxidizing bacterium growing on fumarate in the absence of methanogens. FEMS Microbiol. Lett. 110: 71–76Google Scholar
  16. Roy F, Samain E, Dubourguier HC & Albagnac G (1986)Syntrophomonas sapovorans sp. nov. a new obligately proton reducting anaerobe oxidizing saturated and unsaturated long chain fatty acids. Arch. Microbiol. 145: 142–147Google Scholar
  17. Schauer NL, Brown DP & Ferry JG (1982) Kinetics of formate metabolism inMethanobacterium formicicum andMethanospirillum hungatei. Appl. Environ. Microbiol. 44: 540–554PubMedGoogle Scholar
  18. Schink B (1992) Syntrophism among prokaryotes. In Balows A, Trüper HG, Dworkin M, Harder W & Schleifer K-H (Eds) The Prokaryotes 2nd ed. (pp 276–299). Springer Verlag, New YorkGoogle Scholar
  19. Seitz HJ, Schink B & Conrad R (1988) Thermodynamics of hydrogen metabolism in methanogenic cocultures degrading ethanol or lactate. FEMS Microbiol. Lett. 55: 119–124Google Scholar
  20. Shelton DR & Tiedje JM (1984) Isolation and partial characterisation of bacteria in an anaerobic consortium that mineralizes 3-chlorobenzoic acid. Appl. Environ. Microbiol. 48: 840–848Google Scholar
  21. Stams AJM (1994) Metabolic interactions between anaerobic bacteria in methanogenic environments. Antonie van Leeuwenhoek 66: 271–294PubMedGoogle Scholar
  22. Stams AJM, van Dijk J, Dijkema C & Plugge CM (1993) Growth of syntrophic propionate-oxidizing bacteria with fumarate in the absence of methanogenic bacteria. Appl. Environ. Microbiol. 59: 1114–1119Google Scholar
  23. Stieb M & Schink B (1985) Anaerobic oxidation of fatty acids byClostridium bryantii sp. nov., a sporeforming, obligately syntrophic bacterium. Arch. Microbiol. 140: 387–390Google Scholar
  24. Thiele JH & Zeikus JG (1988) Control of interspecies electron flow during anaerobic digestion: significance of formate transfer versus hydrogen transfer during syntrophic methanogensis in flocs. Appl. Environ. Microbiol. 54: 20–29Google Scholar
  25. Van Kuijk BLM & Stams AJM (1995) Sulfate reduction by a syntrophic propionate oxidizing bacterium. Proceedings of the workshop “Anaerobic processes for bioenergy and environment”. Copenhagen 25–27 January 1995.Google Scholar
  26. Wallrabenstein C, Hauschild E & Schink B (1994) Pure culture and cytological properties of ‘Syntrophobacter wolinii’. FEMS Microbiol. Lett. 123: 249–254Google Scholar
  27. Wofford NQ, Beaty PS & McInerney MJ (1986) Preparation of cellfree extracts and the enzymes involved in fatty acid metabolism inSyntrophomonas wolfei. J. Bacteriol. 167: 179–185PubMedGoogle Scholar
  28. Wolin MJ (1982) Hydrogen transfer in microbial communities. In: Bull AT & Slater JH (Eds) Microbioal interactions and communities (pp 323–356). Academic Press, LondonGoogle Scholar
  29. Wu W-M, Rickley RF, Jain MK & Zeikus JG (1993) Energetics and regulations of formate and hydrogen metabolism byMethanobacterium formicicum. Arch. Microbiol. 159: 57–65Google Scholar
  30. Zhao H, Yang D, Woese CR & Bryant MP (1990) Assignment ofClostridium bryantii toSyntrophosporabryantii gen. nov., comb. nov. on the basis of a 16S rRNA sequence analysis of its crotonategrown pure culture. Int. J. Syst. Bacteriol. 40: 40–44PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Alfons J. M. Stams
    • 1
  • Xiuzhu Dong
    • 1
  1. 1.Department of MicrobiologyWageningen Agricultural UniversityWageningenThe Netherlands

Personalised recommendations