Advertisement

The Astronomy and Astrophysics Review

, Volume 2, Issue 1, pp 1–28 | Cite as

Mass discrepancies in galaxies: dark matter and alternatives

  • R. H. Sanders
Article

Abstract

Neutral hydrogen line observations of the extended rotation curves of spiral galaxies imply that there exist significant discrepancies between the luminous and dynamical mass beyond the bright optical discs. This means either that galaxies contain significant quantities of non-luminous matter (matter with a mass-to-light ratio very much higher than that of ordinary stars), or that the law of gravity on the scale of galaxies is not the usual Newtonian inverse square law. Attempts to account for the observed discrepancy in the context of these two explanations are reviewed here with emphasis given to the second and less conventional alternative. It is argued that the standard picture of spiral galaxy halo and disc formation in the context of cold dark matter cannot account for the observed systematics of the discrepancy — notably rotation curves which are seen to be flat and featureless from the bright inner regions where the visible matter dominates the dynamics (in some cases overwhelmingly) to the outer regions where the dark halo dominates. It is demonstrated that in those galaxies with well-observed rotation curves, the discrepancy apparently appears below a critical acceleration. Any dark matter explanation of the discrepancy must account for this fact. Moreover, this would also eliminate empirically motivated modifications of Newton's law in which the deviation from 1/r occurs beyond a fundamental length scale. The suggestion by Milgrom in which the force law becomes essentially 1/r below a critical acceleration (MOND) can account for most of the observed systematics of galaxy rotation curves and, significantly, leads to the observed luminosity-velocity relationship in spiral galaxies (the Tully-Fisher law). Generally covariant theories of gravity which predict this phenomenology in the weak-field limit are described. Although there is not yet a theory which obviously meets all of the requirements for a physically viable alternative to dark matter, a generalized scalar-tensor theory of the form suggested by Bekenstein (phase coupling gravitation) is the currently leading candidate and has the advantage of being testable locally.

Keywords

Dark Matter Rotation Curve Spiral Galaxy Cold Dark Matter Dark Halo 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aaronson, M.: 1986, inNearly Normal Galaxies, ed. S.M. Faber, Springer-Verlag, New York, p. 57Google Scholar
  2. Aaronson, M., Huchra, J., Mould, J.: 1979,229, 1Google Scholar
  3. Aaronson, M., Huchra, J., Mould, J., Tully, R.B., Fisher, J.R., van Woerden, H., Goss, W.M., Chamaraux, P., Mebold, U., Siegman, B., Berriman, G., Perrson, S.E.: 1982,Astrophys. J. Suppl.,50, 241Google Scholar
  4. Albada, T.S. van: 1982,Monthly Notices Roy. Astron. Soc.,201, 939Google Scholar
  5. Albada, T.S. van, Bahcall, J.N., Begeman, K., Sancisi, R.: 1985,Astrophys. J.,295, 305Google Scholar
  6. Albada, T.S. van, Sancisi, R.: 1986,Phil. Trans. Roy. Soc. London. A,320, 447Google Scholar
  7. Bahcall, J.N., Casertano, S.: 1985,Astrophys. J. Lett.,293, L7Google Scholar
  8. Bardeen, J.M., Bond, J.R., Kaiser, N., Szalay, A.S.: 1986,Astrophys. J.,304, 15Google Scholar
  9. Barnes, J.: 1987, inNearly Normal Galaxies, ed. S.M. Faber, Springer-Verlag, New York, p. 154Google Scholar
  10. Barnes, J., Efstathiou, G.: 1987,Astrophys. J.,319, 575Google Scholar
  11. Barrow, J.D.: 1987, inA Unified View of the Macro- and Micro-Cosmos, eds. A. De Rújula, D.V. Nanopoulos, P.A. Shaver, World Scientific, Singapore, p. 487Google Scholar
  12. Begeman, K.G.: 1988, Doctoral Dissertation, Univ. of GroningenGoogle Scholar
  13. Bekenstein, J.D.: 1977,Phys. Rev. D15, 1458Google Scholar
  14. Bekenstein, J.D., Milgrom, M.: 1984,Astrophys. J.,286, 7Google Scholar
  15. Bekenstein, J.D.: 1988 a, inSecond Canadian Conference on General Relativity and Relativistic Astrophysics, eds. A. Coley, C. Dyer, T. Tupper, World Scientific, Singapore, p. 64Google Scholar
  16. Bekenstein, J.D.: 1988b,Phys. Lett. B.,202, 497Google Scholar
  17. Bekenstein, J.D.: 1990,N. Rosen Festschrift, eds. F. Cooperstock, L. Horwitz, J. Rosen, Israel Physical Society (in press)Google Scholar
  18. Bergmann, P.G.: 1968,Int. J. Theor. Phys.,1, 25Google Scholar
  19. Blumenthal, G.: 1987, inNearly Normal Galaxies, ed. S.M. Faber, Springer-Verlag, New York, p. 401Google Scholar
  20. Blumenthal, G., Faber, S., Primack, J., Rees, M.: 1984,Nature 301, 584Google Scholar
  21. Blumenthal, G., Fabler, S.M., Flores, R.A., Primack, J.R.: 1986,Astrophys. J.,301, 27Google Scholar
  22. Bosma, A.: 1978, Doctoral Dissertation, Univ. of GroningenGoogle Scholar
  23. Brans, C., Dicke, R.H.: 1961,Phys. Rev.,124, 925Google Scholar
  24. Carignan, C.: 1985,Astrophys. J.,299, 59Google Scholar
  25. Carignan, C., Freeman, K.C.: 1985,Astrophys. J.,294, 494Google Scholar
  26. Carignan, C., Sancisi, R., van Albada, T.S.: 1988,Astron. J.,95, 37Google Scholar
  27. Casertano, S., van Gorkom, J.H.: 1989, preprintGoogle Scholar
  28. Dekel, A., Shaham, J.: 1980,Astron. Astrophys.,85, 154Google Scholar
  29. Efstathiou, G., Jones, B.J.T.: 1979,Monthly Notices Roy. Astron. Soc.,186, 133Google Scholar
  30. Faber, S.M., Jackson, R.E.: 1976,Astrophys. J.,204, 668Google Scholar
  31. Fabricant, D., Gorenstein, P.: 1983,Astrophys. J.,267, 535Google Scholar
  32. Fall, S.M., Efstathiou, G.: 1980,Monthly Notices Roy. Astron. Soc.,193, 189 Mass discrepancies in galaxies 27Google Scholar
  33. Felten, J.E.: 1984,Astrophys. J.,286, 3Google Scholar
  34. Felten, J.E.: 1985,Comments Astrophys. Sp. Sc.,11, 53Google Scholar
  35. Finzi, A.: 1963,Monthly Notices Roy. Astron. Soc.,127, 21Google Scholar
  36. Fillmore, J.A., Goldreich, P.: 1984,Astrophys. J.,281, 1Google Scholar
  37. Forman, W., Jones, C., Tucker, W.: 1985,Astrophys. J.,293, 102Google Scholar
  38. Freeman, K.C.: 1970,Astrophys. J.,160, 881Google Scholar
  39. Freeman, K.C.: 1987, inDark Matter in the Universe, IAU. Symp. 117, eds. G.R. Knapp, J., Kormendy, Reidel, Dordrecht, p. 119Google Scholar
  40. Frenk, C.S., White, S.D.M., Davis, M., Efstathiou, G.: 1988,Astrophys. J., bf327, 507Google Scholar
  41. Gunn, J.E.: 1977,Astrophys. J.,218, 592Google Scholar
  42. Gunn, J.E.: 1982, inAstrophysical Cosmology, eds. H.A. Brück, G.V. Coyne, M.S. Longair, Pontifica Academia Scientiarum, Cittá del Vaticano, p. 233Google Scholar
  43. Gunn, G.E., Gott, J.R.: 1972,Astrophys. J.,176, 1Google Scholar
  44. Hernquist, L., Quinn, P.J.: 1987,Astrophys. J.,312, 17Google Scholar
  45. Hoffman, Y., Shaham, J.:Astrophys. J.,297, 16Google Scholar
  46. Hoyle, F.: 1949, inProblems of Cosmological Aerodynamics, International Union of Theoretical and Applied Mathematics and IAU, eds. J.M. Burger, H.C., van de Hulst, Ohio, p. 195Google Scholar
  47. Jeans, J.: 1923,Monthly Notices Roy. Astron. Soc.,84, 60Google Scholar
  48. Kalnajs, A.: 1983, inThe Internal Kinematics and Dynamics of Galaxies, ed. E. Athanassoula, Reidel, Dordrecht, p. 87Google Scholar
  49. Kalnajs, A.: 1987, inDark Matter in the Universe, eds. G.R. Knapp, J. Kormendy, Reidel, Dordrecht, p. 289Google Scholar
  50. Kent, S.M.: 1986,Astron. J.,91, 1301Google Scholar
  51. Kent, S.M.: 1987a,Astron. J.,93, 816Google Scholar
  52. Kent, S.M.: 1987b, inNearly Normal Galaxies, ed. S.M. Faber, Springer-Verlag, New York, p. 81Google Scholar
  53. Kruit, P.C. van der: 1987,Astron. Astrophys. 173, 59Google Scholar
  54. Kuhn, J.R., Kruglyak, L.: 1987,Astrophys. J.,313, 1Google Scholar
  55. Lake, G.: 1989,Astrophys. J.,345, L17Google Scholar
  56. Lake, G., Skillman, E.: 1989,Astron. J.,98, 1274Google Scholar
  57. Milgrom, M.: 1983a,Astrophys. J.,270, 365Google Scholar
  58. Milgrom, M.: 1983b,Astrophys. J.,270, 371Google Scholar
  59. Milgrom, M.: 1983c,Astrophys. J.,270, 384Google Scholar
  60. Milgrom, M.: 1984,Astrophys. J.,287, 571Google Scholar
  61. Milgrom, M.: 1986,Astrophys. J.,302, 617Google Scholar
  62. Milgrom, M.: 1988,Astrophys. J., bf 333, 684Google Scholar
  63. Nordvedt, K., Jr.: 1970,Astrophys. J.,161, 1059Google Scholar
  64. Ostriker, J.P., Peebles, P.J.E.: 1973,Astrophys. J.,186, 467Google Scholar
  65. Pagel, B.J.E.: 1987, inA Unified View of the Macro- and Micro-Cosmos, eds. A. De Rújula, D.V. Nanopoulos, P.A. Shaver, World Scientific, Singapore, 399Google Scholar
  66. Peebles, P.J.E.: 1969,Astrophys. J., bf 155, 393Google Scholar
  67. Peebles, P.J.E.: 1984,Astrophys. J., bf 277, 470Google Scholar
  68. Primack, J.R., Blumenthal, G.R.: 1984, inFormation and Evolution of Galaxies and Large Scale Structures in the Universe, eds. J. Audouze, J. Tran Tranh Van, Reidel, Dordrecht, p. 163Google Scholar
  69. Quinn, P.J., Salmon, J.K., Zurek, W.H.: 1986,Nature 322, 329Google Scholar
  70. Rindler, W.: 1969,Essential Relativity, Van Nostrand Reinhold, New York, p. 222Google Scholar
  71. Roberts, M.S., Whitehurst, R.N.: 1975,Astrophys. J.,201, 327Google Scholar
  72. Rubin, V.C.: 1986, inDark Matter in the Universe, IAU Symp. 117, eds. G. Knapp, J. Kormendy, Reidel, Dordrecht, p. 51Google Scholar
  73. Rubin, V.C., Ford, W.K, Thonnard, N.: 1980,Astrophys. J.,238, 471Google Scholar
  74. Rubin, V.C., Ford, W.K., Thonnard, N., Burstein, D.: 1982,Astrophys. J.,261, 439Google Scholar
  75. Rubin, V.C., Burstein, D., Ford, W.K., Jr., Thonnard, N.: 1985,Astrophys. J.,289, 81Google Scholar
  76. Ryden, B.S., Gunn, J.E.: 1987,Astrophys. J.,318, 15Google Scholar
  77. Sackett, P.D., Sparke, L.S.: 1989, preprintGoogle Scholar
  78. Sanders, R.H.: 1984,Astron. Astrophys. 136, L21Google Scholar
  79. Sanders, R.H.: 1986,Monthly Notices Roy. Astron. Soc.,223, 539Google Scholar
  80. Sanders, R.H.: 1987, inA Unified View of the Macro- and Micro-Cosmos, eds. A. de Rújula, D.V. Nanopoulos, P.A. Shaver, World Scientific, Singapore, p. 349Google Scholar
  81. Sanders, R.H.: 1988,Monthly Notices Roy. Astron. Soc.,235, 105Google Scholar
  82. Sanders, R.H.: 1989,Monthly Notices Roy. Astron. Soc.,241, 135Google Scholar
  83. Schweizer, F., Whitmore, B.C., Rubin, V.C.: 1983,Astron. J., bf88, 909Google Scholar
  84. Schweizer, F., van Gorkom, J.H., Seitzer, P.: 1989,Astrophys. J.,338, 770Google Scholar
  85. Silk, J.: 1987, inA Unified View of the Macro- and Micro-Cosmos, eds. A. De Rújula, D.V. Nanopoulos, P.A. Shaver, World Scientific, Singapore, p. 277Google Scholar
  86. Tohline, J.E.: 1983, inThe Internal Kinematics and Dynamics of Galaxies, ed. E. Athanassoula, Reidel, Dordrecht, p. 205Google Scholar
  87. Trimble, V.: 1987,Ann. Rev. Astron. Astrophys. 25, 425Google Scholar
  88. Tully, R.B., Fisher, J.R.: 1977,Astron. Astrophys. 54, 661Google Scholar
  89. Wagoner, R.V.: 1970,Phys. Rev. D, 1, 3209Google Scholar
  90. Weinberg, S.: 1972,Gravitation and Cosmology, Wiley, New YorkGoogle Scholar
  91. Wevers, B.M.H.R.: 1984, Doctoral Dissertation, Univ. of GroningenGoogle Scholar
  92. Will, C.M.: 1979, inGeneral Relativity, An Einstein Centenary, eds. S.W. Hawking, W. Israel, Cambridge University Press, Cambridge, p. 24Google Scholar
  93. Will, CM.: 1986,Theory and Experiment in Gravitational Physics, University of Cambridge, CambridgeGoogle Scholar
  94. Zwicky, F.: 1933,Helv. Phys. Acta,6, 110Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • R. H. Sanders
    • 1
  1. 1.Kapteyn Astronomical InstituteUniversity of GroningenAV GroningenThe Netherlands

Personalised recommendations