Skip to main content
Log in

Smoothing effects and dispersion of singularities for the Schrödinger evolution group

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We describe smoothing effects and dispersion of singularities for the Schrödinger evolution group in the weighted Sobolev spaces. Under a fairly general assumption on the potential, it is shown that all singularities in the wavefunction vanish instantly whenever the initial state has sufficient decay. We measure the regularity gained by the wavefunction by the decay property of the initial state. No assumptions on the regularity of the initial state are imposed throughout the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brezis, H. &Kato, T., Remarks on the Schrödinger operator with singular complex potentials. J. Math. Pures et Appl.58, 137–151 (1979).

    Google Scholar 

  2. Constantin, P. &Saut, J. C., Local smoothing properties of dispersive equations. J. Amer. Math. Soc.1, 413–439 (1988).

    Google Scholar 

  3. Cycon, H. L., Froese, R. C., Kirsch, W., &Simon, B.,Schrödinger Operators, with Appplication to Quantum Mechanics and Global Geometry. Springer-Verlag, Berlin, Heidelberg, New York (1987).

    Google Scholar 

  4. Friedman, A.,Partial Differential Equations. Holt-Rinehart and Winston, New York (1969).

    Google Scholar 

  5. Ginibre, J., &Velo, G., Sur une équation de Schrödinger non linéaire avec interaction non locale, inNonlinear partial differential equations and their applications, Collège de France seminar Vol. II. Pitman, Boston (1981), 155–199.

    Google Scholar 

  6. Ginibre, J., A remark on some papers byN. Hayashi andT. Ozawa. J. Funct. Anal.85, 349–352 (1989).

    Google Scholar 

  7. Hayashi, N., Nakamitsu, K., &Tsutsumi, M., On solutions of the initial value problem for the nonlinear Schrödinger equations in one space dimension. Math. Z.192, 637–650 (1986).

    Google Scholar 

  8. Hayashi, N., Nakamitsu, K., &Tsutsumi, M., On solutions of the initial value problem for the nonlinear Schrödinger equations. J. Funct. Anal.71, 218–245 (1987).

    Google Scholar 

  9. Hayashi, N., &Ozawa, T., Time decay of solutions to the Cauchy problem for time-dependent Schrödinger-Hartree equations. Commun. Math. Phys.110, 467–478 (1987).

    Google Scholar 

  10. Hayashi, N., &Ozawa, T., Scattering theory in the weightedL 2(ℝn) spaces for some Schrödinger equations. Ann. Inst. Henri Poincaré48, 17–37 (1988).

    Google Scholar 

  11. Hayashi, N., &Ozawa, T., Time decay for some Schrödinger equations. Math. Z.200, 467–483 (1989).

    Google Scholar 

  12. Hayashi, N., &Ozawa, T., Smoothing effect for some Schrödinger equations. J. Funct. Anal.85, 307–348 (1989).

    Google Scholar 

  13. Herbst, I. W., Spectral theory of the operator (p 2 +m 2)1/2Ze 2/r 2.Commun. Math. Phys.53, 285–294 (1977).

    Google Scholar 

  14. Hunziker, W., On the space-time behavior of Schrödinger wavefunctions. J. Math. Phys.7, 300–304 (1966).

    Google Scholar 

  15. Jensen, A., Commutator methods and a smoothing property of the Schrödinger evolution group. Math. Z.191, 53–59 (1986).

    Google Scholar 

  16. Lin, C. S., Interpolation inequalities with weights. Comm. PDE,11, 1515–1538 (1986).

    Google Scholar 

  17. Mourre, E., Absence of singular continuous spectrum for certain self-adjoint operators. Commun. Math. Phys.78, 391–408 (1981).

    Google Scholar 

  18. Nakamitsu, K., Smoothing effects for Schrödinger evolution groups. Tokyo Denki Univ. Kiyo10, 49–62 (1988).

    Google Scholar 

  19. Ozawa, T., Invariant subspaces for the Schrödinger evolution group. Preprint, Nagoya 1989.

  20. Perry, P., Sigal, I. M., &Simon, B., Spectral analysis ofN-body Schrödinger operators. Ann. of Math.114, 519–567 (1981).

    Google Scholar 

  21. Radin, C., &Simon, B., Invariant domains for the time-dependent Schrödinger equation. J. Differential Eqs.29, 289–296 (1978).

    Google Scholar 

  22. Simader, C. G., Bemerkungen über Schrödinger-Operatoren mit stark singulären Potentialen. Math. Z.138, 53–70 (1974).

    Google Scholar 

  23. Simon, B.,Functional Integration and Quantum Physics. Academic Press, New York (1979).

    Google Scholar 

  24. Sjölin, P., Regularity of solutions to the Schrödinger equation. Duke Math. J.55, 699–715 (1987).

    Google Scholar 

  25. Strichartz, R. T., Multipliers on fractional Sobolev spaces. J. Math. Mech.16, 1031–1060 (1967).

    Google Scholar 

  26. Tanabe, H.,Equations of Evolution. Pitman, London (1979).

    Google Scholar 

  27. Triebel, H., Spaces of distributions with weights. Multipliers inL p-spaces with weights. Math. Nachr.78, 339–355 (1977).

    Google Scholar 

  28. Yajima, K., Existence of solutions for Schrödinger evolution equations. Commun. Math. Phys.110, 415–26 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by H.Brezis

Dedicated to Professor Teruo Ikebe on his sixtieth birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ozawa, T. Smoothing effects and dispersion of singularities for the Schrödinger evolution group. Arch. Rational Mech. Anal. 110, 165–186 (1990). https://doi.org/10.1007/BF00873497

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00873497

Keywords

Navigation