Applied Categorical Structures

, Volume 2, Issue 2, pp 173–185 | Cite as

Universalities

  • Věra Trnková
Article

Abstract

We show that a quotient category of the category of all topological spaces and all open continuous mappings contains an isomorphic copy of every category as a full subcategory. We construct a functorF : K → K universal in the following sense: for every functorH : H1→ H2 (H1,H2 arbitrary) there exist full one-to-one functors φ i :Hi→ K such thatF o φ1 = φ2 oH (the construction proceeds in a more general setting of enriched categories).

Mathematics Subject Classifications (1991)

18B15 18D20 

Key words

Universal category universal functor V-category 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Adámek, H. Herrlich, and G. Strecker:Abstract and Concrete Categories, Wiley Interscience New York, 1990.Google Scholar
  2. 2.
    M. E. Adams and H. A. Priestley: De Morgan algebras are universal,Discrete Math. 66 (1987), 1–13.Google Scholar
  3. 3.
    E. Fried and J. Sichler: Homomorphisms of integral domains of characteristic zero,Trans. Amer. Math. Soc. 225 (1977), 163–182.Google Scholar
  4. 4.
    R. Fraîssé: Sur l'extension aux relations de quelques proprietés des ordres,Ann. Sci. École Norm. Sup. (3)71 (1954), 361–388.Google Scholar
  5. 5.
    P. Goralčík, V. Koubek, and J. Sichler: Universal varieties of (0,1)-lattices,Canad. J. Math. 42 (1990), 470–490.Google Scholar
  6. 6.
    G. Grätzer and J. Sichler: On the endomorphism semigroup (and category) of bounded lattices,Pacific J. Math. 35 (1970), 639–647.Google Scholar
  7. 7.
    F. Hausdorff:Grundzüge der Mengenlehre, Leipzig, 1914.Google Scholar
  8. 8.
    Z. Hedrlín and J. Lambek: How comprehensive is the category of semigroups?Algebra 11 (1969), 195–212.Google Scholar
  9. 9.
    J. B. Johnstone: Universal infinite partially ordered system,Proc. Amer. Math. Soc. 7 (1956), 507–514.Google Scholar
  10. 10.
    B. Jónsson: Universal relational system,Math. Scand. 4 (1956), 193–208.Google Scholar
  11. 11.
    G. M. Kelly:Basic Concepts of Enriched Category Theory, Cambridge Univ. Press, Cambridge-New York-Melbourne, 1982.Google Scholar
  12. 12.
    V. Koubek and J. Sichler: Universal varieties of semigroups,J. Austral. Math. Soc. Ser. A 36 (1984), 143–152.Google Scholar
  13. 13.
    L. Kučera: Every category is a factorization of a concrete one,J. Pure Appl. Alg. 1 (1971), 373–376.Google Scholar
  14. 14.
    S. Mac Lane and R. Paré: Coherence for bicategories and indexed categories,J. Pure Appl. Algebra 37 (1985), 59–80.Google Scholar
  15. 15.
    A. Mostowski: Über gewisse universelle Relationen,Ann. Soc. Polon. Math. 17 (1938), 117–118.Google Scholar
  16. 16.
    A. Pultr and V. Trnková:Combinatorial, Algebraic and Topological Representations of Groups, Semigroups and Categories, North-Holland, Amsterdam, 1980.Google Scholar
  17. 17.
    V. Trnková: Universal categories,Comment. Math. Univ. Carolinae 7 (1966), 143–206.Google Scholar
  18. 18.
    V. Trnková and J. Reiterman: The categories of presheaves containing any category of algebras,Dissertationes Mathematicae 124 (1975), 1–58.Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • Věra Trnková
    • 1
  1. 1.Mathematical Institute of Charles UniversitySokolovská 83Czech Republic

Personalised recommendations