Antonie van Leeuwenhoek

, Volume 64, Issue 3–4, pp 357–386 | Cite as

A polyphasic taxonomic study of thermophilic bacilli from a wide geographical area

  • Duncan White
  • Richard J. Sharp
  • Fergus G. Priest
Article

Abstract

Two hundred and thirty-four thermophilicBacillus strains isolated from geographically widespread locations were examined by phenotypic characterisation followed by numerical analysis. The strains were distributed between eighteen cluster-groups which were subsequently evaluated in DNA base composition and DNA sequence homology studies. The inclusion of type and reference strains unambiguously identified strains related toB. licheniformis, B. pallidus, B. smithii, B. stearothermophilus, B. thermocloacae and B. thermoglucosidasius. Other reference strains included in distinctive groups were ‘B. caldotenax’, together with ‘B. caldovelox’ and ‘B. caldolyticus’,B. kaustophilus and ‘B. thermodenitrificans’. An emended description ofB. kaustophilus is provided. It is proposed that ‘B. caldotenax’ and ‘B. thermodenitrificans’ should be accepted as validly described species. Members of other clusters that appeared to have distinctive characteristics, including beta-glucanase production and the ability to degrade tyrosine, may provide the nuclei of further novel species.

Key words

Bacillus nomenclature thermophile taxonomy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen MB (1953) The thermophilic aerobic spore-forming bacteria. Bact. Rev. 17: 125–173Google Scholar
  2. Alexander B & Priest FG (1989)Bacillus glucanolyticus, a new species that degrades a variety of β-glucans. Int. J. Syst. Bacteriol. 39: 112–115Google Scholar
  3. Alexander B & Priest FG (1991) Numerical classification and identification ofBacillus sphaericus including some strains pathogenic for mosquito larvae. J. Gen. Microbiol. 136: 367–376Google Scholar
  4. Ambroz A (1913)Denitrobacterium thermophilus spec. nov. Ein Beitrag zur Biologie der thermophilen Bakterien. Zbl. Bakt. Parasit. II: 3–16Google Scholar
  5. Ash C, Farrow AE, Wallbanks S & Collins MD (1991) Phylogenetic heterogeneity of the genusBacillus revealed by small-subunit-ribosomal RNA sequences. Letts. Appl. Microbiol. 13: 202–206Google Scholar
  6. Bull AT, Goodfellow M & Slater H (1992) Biodiversity as a source of innovation in biotechnology. Ann. Rev. Microbiol. 46: 219–252Google Scholar
  7. Cameron EJ & Esty JR (1926) The examination of spoiled canned foods. 2. Classification of flat sour, spoilage organisms from non acid foods. J. Infect. Dis. 38: 89–105Google Scholar
  8. Cowan ST (Ed) (1974) Cowan & Steel's Manual for the Identification of Medical Bacteria. Cambridge University Press, CambridgeGoogle Scholar
  9. Darland G & Brock TD (1971)Bacillus acidocaldarius sp. nov., an acidophilic thermophilic spore-forming bacterium. J. Gen. Microbiol. 67: 9–15Google Scholar
  10. Daron HH (1967) Occurrence of isocitrate lyase in a thermophilicBacillus species. J. Bacteriol. 93: 703–710Google Scholar
  11. Daron HH (1973) Nutritional alteration of the fatty acid composition of a thermophilicBacillus species. J. Bacteriol. 116: 1096–1099Google Scholar
  12. Debartolomeo A, Trotta F, La Rosa F, Saltalamacchia G & Mastrandrea V (1991) Numerical analysis and DNA base compositions of some thermophilicBacillus species. Int. J. Syst. Bacteriol. 41: 501–509Google Scholar
  13. Demharter W & Hensel R (1989)Bacillus thermocloacae sp. nov., a new thermophilic species from sewage sludge. Syst. Appl. Microbiol. 11: 272–276Google Scholar
  14. Donk PJ (1920) A highly resistant thermophilic organism. J. Bacteriol. 5: 373–374Google Scholar
  15. Epstein I & Grossowicz N (1969) Prototrophic thermophilicBacillus: Isolation, properties and kinetics of growth. J. Bacteriol. 99: 414–417Google Scholar
  16. Fahmy F, Flossdorf J & Claus D (1985) The DNA base composition of the type strains of the genusBacillus. Syst. Appl. Microbiol. 6: 60–65Google Scholar
  17. Feinberg AP & Vogelstein B (1983) A technique for radiolabelling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 132: 6–13Google Scholar
  18. Gibson T & Gordon RE (1974) The GenusBacillus. In: Buchanan RE & Gibbons NE (Eds) Bergey's manual of determinative bacteriology, 8th edition (pp. 529–550). Williams & Wilkins, BaltimoreGoogle Scholar
  19. Golovacheva RS, Egora LA & Loginova LG (1965) Ecology and systematics of aerobic obligate thermophilic bacteria isolated from thermal localities on Mount Yangou-Tau and Kunashir Isle of the Kuril chain. Microbiology (USSR) English translation 34: 693–698Google Scholar
  20. Golovacheva RS, Loginova LG, Salikov TA, Kolesnikov AA & Zaitsera GN (1975) A new thermophilic speciesBacillus thermocatenulatus nov. sp. Microbiology (USSR) English Translation 44: 230–233Google Scholar
  21. Gordon RE & Smith NR (1949) Aerobic spore forming bacteria capable of growth at high temperatures. J. Bacteriol. 58: 327–341Google Scholar
  22. Gordon RE, Haynes WC & Pang CH-N (1973) The GenusBacillus. Washington D.C. United States Department of Agriculture Monograph No. 427.Google Scholar
  23. Guerineau M, Alexander B & Priest FG (1992) Isolation and identification of mosquito pathogenic strains ofBacillus sphaericus. J. Invertebr. Pathol. 57: 325–333Google Scholar
  24. Heinen UJ & Heinen W (1972) Characteristics and properties of a caldo-active bacterium producing extracellular enzymes and two-related strains. Arch. Mikrobiol. 82: 1–23Google Scholar
  25. Heinen W, Lauwers AM & Mulders JWM (1982)Bacillus flavothermus a newly isolated facultative thermophile. Ant. van Leeuwenhock 48: 265–272Google Scholar
  26. Hill LR, Lapage SP & Bowie IS (1978) Computer-assisted identification of coryneform bacteria. In: Bousfield IJ & Callely AG (Eds) Coryneform Bacteria (pp. 181–215). Academic Press, LondonGoogle Scholar
  27. Johnson JL (1981) Genetic characterisation. In: Gerhardt P, Murray RGE, Costilow RN, Nester EW, Wood WA, Krieg NR & Phillips GB (Eds) Manual of Methods for General Bacteriology (pp. 450–472). American Society for Microbiology, Washington D.C.Google Scholar
  28. Klaushofer H & Hollaus F (1970) Zur Taxonomie der Hochthermophilen, in Zuckerfabrikssaften vorkommenden aeroben Sporenbildner. Zeitschrift für die Zuckerindustrie 20: 465–470Google Scholar
  29. Logan NA & Berkeley RCW (1981) Classification and identification of members of the genusBacillus using API tests. In: Berkeley RCW & Goodfellow M (Eds) The Aerobic Endospore-forming Bacteria: Classification and Identification (pp. 105–140). Academic Press, LondonGoogle Scholar
  30. Manachini P, Craveri L & Guicciardi A (1968) Composizione in basi dell acido desossiribonucleico di forme mesofile termofacultative and termofile dell genereBacillus. Ann. Microbiol. Enzimol. 18: 1–8Google Scholar
  31. Manachini PL, Fortina MG & Parini C (1988) Thermostable alkaline protease produced byBacillus thermoruber-a new species ofBacillus. Appl. Microbiol. Biotechnol. 28: 409–413Google Scholar
  32. Miquel P (1988) Monograpki d'un bacille vicant au-de la de 70°C. Ann. Micrograph. 1: 3–10Google Scholar
  33. Mishustin EN (1950) Quoted in Golovacheva et al. (1965)Google Scholar
  34. Nakamura LK (1984)Bacillus amylolyticus sp. nov. nom. rev.,Bacillus lautus sp. nov. nom. rev.,Bacillus pabuli sp. nov. nom. rev. andBacillus validus sp. nov. nom. rev. Int. J. Syst. Bacteriol. 34: 224–226Google Scholar
  35. Nakamura LK, Blumenstock I & Claus D (1988) Taxonomic study ofBacillus coagulans Hammer 1915 with a proposal forBacillus smithii sp. nov. Int. J. Syst. Bacteriol. 38: 63–73Google Scholar
  36. Nakamura LK (1989) Taxonomic relationship of black-pigmentedBacillus subtilis strains and proposal forBacillus atrophaeus sp. nov. Int. J. Syst. Bacteriol. 39: 295–300Google Scholar
  37. Prickett PS (1928) Thermophilic and thermoduric microorganisms with special reference to species isolated from milk. Description of spore forming types. New York Agric. Exp. Stat. Tech. Bull. 147Google Scholar
  38. Priest FG (1993) Systematics and ecology ofBacillus. In: Sonenshein AL, Hock JA & Losick R (Eds)Bacillus subtilis and Other Gram Positive Bacteria, Biochemistry, Physiology and Molecular Genetics (pp. 3–16). American Society for Microbiology, Washington DCGoogle Scholar
  39. Priest FG & Alexander B (1988) A frequency matrix for the probabilistic identification of some bacilli. J. Gen. Microbiol. 134: 3011–3018Google Scholar
  40. Priest FG & Williams ST (1993) Computer-assisted identification. In: Goodfellow M & O'Donnell AG (Eds) Handbook of New Bacterial Systematics (pp. 361–381). Academic Press, LondonGoogle Scholar
  41. Priest FG, Goodfellow M & Todd C (1981) The genusBacillus: A numerical analysis. In: Berkeley RCW & Goodfellow M (Eds) The Aerobic Endospore-forming Bacteria: Classification and Identification (pp. 93–103). Academic Press, LondonGoogle Scholar
  42. Priest FG, Goodfellow M & Todd C (1988) A numerical classification of the genusBacillus. J. Gen. Microbiol. 134: 1847–1882Google Scholar
  43. Rodriguez RL & Tait RC (1983) Recombinant DNA Techniques: an Introduction (pp. 162–163). Addison-Wesley Publishing Co., Reading, MassGoogle Scholar
  44. Scholtz T, Demharter W, Hensel R & Kandler O (1987)Bacillus pallidus sp. nov., a new thermophilic species from sewage. Syst. Appl. Microbiol. 9: 91–96Google Scholar
  45. Seldin L & Dubnau D (1985) Deoxyribonucleic acid homology amongBacillus polymyxa, Bacillus macerans, Bacillus axozotofixans, and other nitrogen-fixingBacillus strains. Int. J. System. Bacteriol. 35: 151–154Google Scholar
  46. Sharp RJ & Munster MJ (1986) Biotechnological implications for microorganisms from extreme environments. In: Herbert RA & Codd GA (Eds) Microbes in Extreme Environments (pp. 215–296). Academic Press, LondonGoogle Scholar
  47. Sharp RJ, Bown KJ & Atkinson A (1980) Phenotypic and genotypic characterisation of some thermophilic species ofBacillus. J. Gen. Microbiol. 117: 201–210Google Scholar
  48. Sharp RJ, Munster M, Vivian A, Ahmed S & Atkinson T (1989) Taxonomic and genetic studies ofBacillus thermophiles. In: Da Costa MS, Duarte JC & Williams RAD (Eds) Microbiology of Extreme Environments and its Biotechnological Potential (pp. 62–81). Elsevier Applied Science, LondonGoogle Scholar
  49. Smith NR & Gordon RE (1957)Bacillus. In: Breed RS, Murray EGD & Smith NR (Eds) Bergey's Manual of Determinative Bacteriology, 7th edition (pp. 613–634). Balliere, Tindall & Fox, LondonGoogle Scholar
  50. Smith NR, Gordon RE & Clark FE (1952) Aerobic Spore-forming Bacteria. United States Department of Agriculture Monograph No. 16, Washington DCGoogle Scholar
  51. Sneath PHA (1979a) Basic program for character separation indices from an identification matrix of percent positive characters. Comp. Geosci. 5: 349–357Google Scholar
  52. Sneath PHA (1979b) Basic program for identification of an unknown with presence-absence data against an identification matrix of percent positive characters. Comp. Geosci. 5: 195–213Google Scholar
  53. Sneath PHA (1980a) Basic program for the most diagnostic properties of groups from an identification matrix of percent positive characters. Comp. Geosci. 6: 21–26Google Scholar
  54. Sneath PHA (1980b) Basic program for determining the best identification scores possible from the most typical examples when compared with an identification matrix of percent positive characters. Comp. Geosci. 6: 27–34Google Scholar
  55. Sneath PHA (1980c) Basic program for determining the overlap between groups in an identification matrix of percent positive characters. Comp. Geosci. 6: 267–278Google Scholar
  56. Sneath PHA & Johnson R (1972) The influence on numerical taxonomic similarities of errors in microbiological tests. J. Gen. Microbiol. 72: 377–392Google Scholar
  57. Sneath PHA & Sokal RR (1973) Numerical Taxonomy. The Principles of Practice of Numerical Classification. San Francisco, Freeman and Co.Google Scholar
  58. Suzuki Y, Kishigami T & Abe S (1976) Production of extracellular α-glucosidase by a thermophilicBacillus species. Appl. Environ. Microbiol. 31: 807–812Google Scholar
  59. Suzuki Y, Kishigami T, Inoue K, Mizoguchi Y, Eto N, Takagi M & Abe S (1983)Bacillus thermoglucosidasius sp. nov., a new species of obligately thermophilic bacilli. Syst. Appl. Microbiol. 4: 487–495Google Scholar
  60. Walker PD & Wolf J (1971) The taxonomy ofBacillus stearothermophilus. In: Barker AN, Gould GW & Wolf J (Eds) Spore Research, 1971 (pp. 247–262). Academic Press, LondonGoogle Scholar
  61. Williams ST, Goodfellow M, Alderson G, Wellington EHM, Sneath P & Sackin MJ (1983a) Numerical classification ofStreptomyces and related genera. J. Gen. Microbiol. 129: 1743–1813Google Scholar
  62. Williams ST, Goodfellow M, Wellington EHM, Vickers JC, Alderson G, Sneath PHA, Sackin MJ & Mortimer M (1983b) A probability matrix for identification of some streptomyces. J. Gen. Microbiol. 129: 1815–1830Google Scholar
  63. Williams ST, Goodfellow M & Vickers JC (1984) New microbes from old habitats. Symp. Soc. Gen. Microbiol. 36 (II): 219–256Google Scholar
  64. Wilson GS & Miles AA (1964) Topley and Wilson's Principles of Bacteriology and Immunology, Vol I. (pp. 486–498). Edward Arnold, LondonGoogle Scholar
  65. Wishart D (1987) Clustan user manual. 4th Edition. St. Andrews, Computing Laboratory University, St. AndrewsGoogle Scholar
  66. Zarilla KA & Perry JJ (1987)Bacillus thermoleovorans sp., nov. a species of obligately thermophilic hydrocarbon utilising endospore-forming bacteria. Syst. Appl. Microbiol. 9: 258–264Google Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • Duncan White
    • 1
  • Richard J. Sharp
    • 2
  • Fergus G. Priest
    • 3
  1. 1.Department of Plant and Soil ScienceUniversity of AberdeenAberdeenUK
  2. 2.Microbiology and Environmental Research GroupSalisburyUK
  3. 3.Department of Biological SciencesHeriot Watt UniversityEdinburghUK

Personalised recommendations